Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Use the inverse of the function [tex]y = x^2 - 18x[/tex] to find the unknown values.

[tex]\[
\begin{array}{l}
b = \square \\
y = \pm \sqrt{bx + c} + d \\
c = \square \\
d = \square
\end{array}
\][/tex]


Sagot :

To find the unknown values in the inverse of the function \( y = x^2 - 18x \):

1. First, we look at the original function: \( y = x^2 - 18x \).

2. To find the inverse, we start by swapping \( x \) and \( y \):
[tex]\[ x = y^2 - 18y \][/tex]

3. We then arrange this as a quadratic equation in terms of \( y \):
[tex]\[ y^2 - 18y - x = 0 \][/tex]

4. To solve for \( y \), we use the quadratic formula, \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = -18 \), and \( c = -x \). However, in this specific quadratic equation:
[tex]\[ y = \frac{18 \pm \sqrt{(18)^2 + 4x}}{2} \][/tex]

5. Simplifying the expression inside the square root and the equation itself:
[tex]\[ (18)^2 = 324 \implies y = \frac{18 \pm \sqrt{324 + 4x}}{2} \][/tex]
[tex]\[ y = \frac{18 \pm \sqrt{324 + 4x}}{2} = 9 \pm \sqrt{81 + x} \][/tex]

6. Thus, the inverse function is \( y = 9 \pm \sqrt{81 + x} \).

From this inverse function, we can see that the form is \( y = \pm \sqrt{bx + c} + d \). By comparison:

- \( b = 1 \)
- \( c = 81 \)
- \( d = 9 \)

So, the values are:
[tex]\[ \begin{array}{l} b = 1 \\ c = 81 \\ d = 9 \end{array} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.