Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the unknown values in the inverse of the function \( y = x^2 - 18x \):
1. First, we look at the original function: \( y = x^2 - 18x \).
2. To find the inverse, we start by swapping \( x \) and \( y \):
[tex]\[ x = y^2 - 18y \][/tex]
3. We then arrange this as a quadratic equation in terms of \( y \):
[tex]\[ y^2 - 18y - x = 0 \][/tex]
4. To solve for \( y \), we use the quadratic formula, \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = -18 \), and \( c = -x \). However, in this specific quadratic equation:
[tex]\[ y = \frac{18 \pm \sqrt{(18)^2 + 4x}}{2} \][/tex]
5. Simplifying the expression inside the square root and the equation itself:
[tex]\[ (18)^2 = 324 \implies y = \frac{18 \pm \sqrt{324 + 4x}}{2} \][/tex]
[tex]\[ y = \frac{18 \pm \sqrt{324 + 4x}}{2} = 9 \pm \sqrt{81 + x} \][/tex]
6. Thus, the inverse function is \( y = 9 \pm \sqrt{81 + x} \).
From this inverse function, we can see that the form is \( y = \pm \sqrt{bx + c} + d \). By comparison:
- \( b = 1 \)
- \( c = 81 \)
- \( d = 9 \)
So, the values are:
[tex]\[ \begin{array}{l} b = 1 \\ c = 81 \\ d = 9 \end{array} \][/tex]
1. First, we look at the original function: \( y = x^2 - 18x \).
2. To find the inverse, we start by swapping \( x \) and \( y \):
[tex]\[ x = y^2 - 18y \][/tex]
3. We then arrange this as a quadratic equation in terms of \( y \):
[tex]\[ y^2 - 18y - x = 0 \][/tex]
4. To solve for \( y \), we use the quadratic formula, \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = -18 \), and \( c = -x \). However, in this specific quadratic equation:
[tex]\[ y = \frac{18 \pm \sqrt{(18)^2 + 4x}}{2} \][/tex]
5. Simplifying the expression inside the square root and the equation itself:
[tex]\[ (18)^2 = 324 \implies y = \frac{18 \pm \sqrt{324 + 4x}}{2} \][/tex]
[tex]\[ y = \frac{18 \pm \sqrt{324 + 4x}}{2} = 9 \pm \sqrt{81 + x} \][/tex]
6. Thus, the inverse function is \( y = 9 \pm \sqrt{81 + x} \).
From this inverse function, we can see that the form is \( y = \pm \sqrt{bx + c} + d \). By comparison:
- \( b = 1 \)
- \( c = 81 \)
- \( d = 9 \)
So, the values are:
[tex]\[ \begin{array}{l} b = 1 \\ c = 81 \\ d = 9 \end{array} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.