Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for \(\cos C\) using the Law of Cosines, we start with the given equation:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]
We need to isolate \(\cos C\). Here are the steps to do so:
1. Start with the equation:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]
2. Rearrange the equation to isolate the term involving \(\cos C\). Subtract \(a^2 + b^2\) from both sides:
[tex]\[ c^2 - a^2 - b^2 = -2ab \cos C \][/tex]
3. Divide both sides of the equation by \(-2ab\) to solve for \(\cos C\):
[tex]\[ \cos C = \frac{c^2 - a^2 - b^2}{-2ab} \][/tex]
4. Simplify the equation by factoring out a negative sign in the numerator:
[tex]\[ \cos C = \frac{-(a^2 + b^2 - c^2)}{2ab} \][/tex]
5. Rearranging the terms in the numerator gives:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Therefore, the correct expression for \(\cos C\) is:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Thus, the correct choice from the given options is:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]
We need to isolate \(\cos C\). Here are the steps to do so:
1. Start with the equation:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]
2. Rearrange the equation to isolate the term involving \(\cos C\). Subtract \(a^2 + b^2\) from both sides:
[tex]\[ c^2 - a^2 - b^2 = -2ab \cos C \][/tex]
3. Divide both sides of the equation by \(-2ab\) to solve for \(\cos C\):
[tex]\[ \cos C = \frac{c^2 - a^2 - b^2}{-2ab} \][/tex]
4. Simplify the equation by factoring out a negative sign in the numerator:
[tex]\[ \cos C = \frac{-(a^2 + b^2 - c^2)}{2ab} \][/tex]
5. Rearranging the terms in the numerator gives:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Therefore, the correct expression for \(\cos C\) is:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Thus, the correct choice from the given options is:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.