Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve for \(\cos C\) using the Law of Cosines, we start with the given equation:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]
We need to isolate \(\cos C\). Here are the steps to do so:
1. Start with the equation:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]
2. Rearrange the equation to isolate the term involving \(\cos C\). Subtract \(a^2 + b^2\) from both sides:
[tex]\[ c^2 - a^2 - b^2 = -2ab \cos C \][/tex]
3. Divide both sides of the equation by \(-2ab\) to solve for \(\cos C\):
[tex]\[ \cos C = \frac{c^2 - a^2 - b^2}{-2ab} \][/tex]
4. Simplify the equation by factoring out a negative sign in the numerator:
[tex]\[ \cos C = \frac{-(a^2 + b^2 - c^2)}{2ab} \][/tex]
5. Rearranging the terms in the numerator gives:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Therefore, the correct expression for \(\cos C\) is:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Thus, the correct choice from the given options is:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]
We need to isolate \(\cos C\). Here are the steps to do so:
1. Start with the equation:
[tex]\[ c^2 = a^2 + b^2 - 2ab \cos C \][/tex]
2. Rearrange the equation to isolate the term involving \(\cos C\). Subtract \(a^2 + b^2\) from both sides:
[tex]\[ c^2 - a^2 - b^2 = -2ab \cos C \][/tex]
3. Divide both sides of the equation by \(-2ab\) to solve for \(\cos C\):
[tex]\[ \cos C = \frac{c^2 - a^2 - b^2}{-2ab} \][/tex]
4. Simplify the equation by factoring out a negative sign in the numerator:
[tex]\[ \cos C = \frac{-(a^2 + b^2 - c^2)}{2ab} \][/tex]
5. Rearranging the terms in the numerator gives:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Therefore, the correct expression for \(\cos C\) is:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Thus, the correct choice from the given options is:
[tex]\[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.