Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which of the given choices are equivalent to the expression \( x^{3/5} \), we need to simplify and compare each choice to \( x^{3/5} \).
### Given Expression:
[tex]\[ x^{3/5} \][/tex]
### Choices:
#### A. \( \left(x^8\right)^{1/5} \)
Simplify using the power of a power rule, \((a^m)^n = a^{m \cdot n}\):
[tex]\[ \left(x^8\right)^{1/5} = x^{8 \cdot (1/5)} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### B. \( \sqrt[8]{x^5} \)
Express in fractional exponents:
[tex]\[ \sqrt[8]{x^5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### C. \( \sqrt[5]{x^8} \)
Express in fractional exponents:
[tex]\[ \sqrt[5]{x^8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### D. \( \left(x^5\right)^{1/8} \)
Simplify using the power of a power rule:
[tex]\[ \left(x^5\right)^{1/8} = x^{5 \cdot (1/8)} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### E. \( \left(\sqrt[8]{x}\right)^5 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[8]{x}\right)^5 = \left(x^{1/8}\right)^5 = x^{(1/8) \cdot 5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### F. \( \left(\sqrt[5]{x}\right)^8 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[5]{x}\right)^8 = \left(x^{1/5}\right)^8 = x^{(1/5) \cdot 8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
### Conclusion:
None of the given choices \(A, B, C, D, E,\) and \(F\) are equivalent to \( x^{3/5} \).
So, there are no equivalent expressions from the choices provided.
### Given Expression:
[tex]\[ x^{3/5} \][/tex]
### Choices:
#### A. \( \left(x^8\right)^{1/5} \)
Simplify using the power of a power rule, \((a^m)^n = a^{m \cdot n}\):
[tex]\[ \left(x^8\right)^{1/5} = x^{8 \cdot (1/5)} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### B. \( \sqrt[8]{x^5} \)
Express in fractional exponents:
[tex]\[ \sqrt[8]{x^5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### C. \( \sqrt[5]{x^8} \)
Express in fractional exponents:
[tex]\[ \sqrt[5]{x^8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### D. \( \left(x^5\right)^{1/8} \)
Simplify using the power of a power rule:
[tex]\[ \left(x^5\right)^{1/8} = x^{5 \cdot (1/8)} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### E. \( \left(\sqrt[8]{x}\right)^5 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[8]{x}\right)^5 = \left(x^{1/8}\right)^5 = x^{(1/8) \cdot 5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### F. \( \left(\sqrt[5]{x}\right)^8 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[5]{x}\right)^8 = \left(x^{1/5}\right)^8 = x^{(1/5) \cdot 8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
### Conclusion:
None of the given choices \(A, B, C, D, E,\) and \(F\) are equivalent to \( x^{3/5} \).
So, there are no equivalent expressions from the choices provided.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.