Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given choices are equivalent to the expression \( x^{3/5} \), we need to simplify and compare each choice to \( x^{3/5} \).
### Given Expression:
[tex]\[ x^{3/5} \][/tex]
### Choices:
#### A. \( \left(x^8\right)^{1/5} \)
Simplify using the power of a power rule, \((a^m)^n = a^{m \cdot n}\):
[tex]\[ \left(x^8\right)^{1/5} = x^{8 \cdot (1/5)} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### B. \( \sqrt[8]{x^5} \)
Express in fractional exponents:
[tex]\[ \sqrt[8]{x^5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### C. \( \sqrt[5]{x^8} \)
Express in fractional exponents:
[tex]\[ \sqrt[5]{x^8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### D. \( \left(x^5\right)^{1/8} \)
Simplify using the power of a power rule:
[tex]\[ \left(x^5\right)^{1/8} = x^{5 \cdot (1/8)} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### E. \( \left(\sqrt[8]{x}\right)^5 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[8]{x}\right)^5 = \left(x^{1/8}\right)^5 = x^{(1/8) \cdot 5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### F. \( \left(\sqrt[5]{x}\right)^8 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[5]{x}\right)^8 = \left(x^{1/5}\right)^8 = x^{(1/5) \cdot 8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
### Conclusion:
None of the given choices \(A, B, C, D, E,\) and \(F\) are equivalent to \( x^{3/5} \).
So, there are no equivalent expressions from the choices provided.
### Given Expression:
[tex]\[ x^{3/5} \][/tex]
### Choices:
#### A. \( \left(x^8\right)^{1/5} \)
Simplify using the power of a power rule, \((a^m)^n = a^{m \cdot n}\):
[tex]\[ \left(x^8\right)^{1/5} = x^{8 \cdot (1/5)} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### B. \( \sqrt[8]{x^5} \)
Express in fractional exponents:
[tex]\[ \sqrt[8]{x^5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### C. \( \sqrt[5]{x^8} \)
Express in fractional exponents:
[tex]\[ \sqrt[5]{x^8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### D. \( \left(x^5\right)^{1/8} \)
Simplify using the power of a power rule:
[tex]\[ \left(x^5\right)^{1/8} = x^{5 \cdot (1/8)} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### E. \( \left(\sqrt[8]{x}\right)^5 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[8]{x}\right)^5 = \left(x^{1/8}\right)^5 = x^{(1/8) \cdot 5} = x^{5/8} \][/tex]
This is not equivalent to \( x^{3/5} \).
#### F. \( \left(\sqrt[5]{x}\right)^8 \)
Express in fractional exponents and simplify:
[tex]\[ \left(\sqrt[5]{x}\right)^8 = \left(x^{1/5}\right)^8 = x^{(1/5) \cdot 8} = x^{8/5} \][/tex]
This is not equivalent to \( x^{3/5} \).
### Conclusion:
None of the given choices \(A, B, C, D, E,\) and \(F\) are equivalent to \( x^{3/5} \).
So, there are no equivalent expressions from the choices provided.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.