At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze each of the given pairs of expressions to determine if they are equivalent.
### Choice A: \(12^{2/7}\) and \((\sqrt{12})^7\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{12} = 12^{1/2}\), so \((\sqrt{12})^7 = (12^{1/2})^7 = 12^{7 \times 1/2} = 12^{7/2}\).
Now, compare \(12^{2/7}\) and \(12^{7/2}\).
Clearly, \(12^{2/7}\) is not equal to \(12^{7/2}\).
Thus, the expressions in choice A are not equivalent.
### Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt[3]{125} = 125^{1/3}\), so \((\sqrt[3]{125})^9 = (125^{1/3})^9 = 125^{9 \times 1/3} = 125^{9/3}\).
Now, compare \((125^{1/3})^9\) and \(125^{9/3}\).
They both simplify to \(125^{9/3}\).
Thus, the expressions in choice B are equivalent.
### Choice C: \(4^{1/5}\) and \((\sqrt{4})^5\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{4} = 4^{1/2}\), so \((\sqrt{4})^5 = (4^{1/2})^5 = 4^{5 \times 1/2} = 4^{5/2}\).
Now, compare \(4^{1/5}\) and \(4^{5/2}\).
Clearly, \(4^{1/5}\) is not equal to \(4^{5/2}\).
Thus, the expressions in choice C are not equivalent.
### Choice D: \(8^{9/2}\) and \((\sqrt{8})^9\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{8} = 8^{1/2}\), so \((\sqrt{8})^9 = (8^{1/2})^9 = 8^{9 \times 1/2} = 8^{9/2}\).
Now, compare \(8^{9/2}\) and \(8^{9/2}\).
They are clearly equal.
Thus, the expressions in choice D are equivalent.
### Conclusion
The pairs of equivalent expressions are:
- Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
- Choice D: [tex]\(8^{9/2}\)[/tex] and [tex]\((\sqrt{8})^9\)[/tex]
### Choice A: \(12^{2/7}\) and \((\sqrt{12})^7\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{12} = 12^{1/2}\), so \((\sqrt{12})^7 = (12^{1/2})^7 = 12^{7 \times 1/2} = 12^{7/2}\).
Now, compare \(12^{2/7}\) and \(12^{7/2}\).
Clearly, \(12^{2/7}\) is not equal to \(12^{7/2}\).
Thus, the expressions in choice A are not equivalent.
### Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt[3]{125} = 125^{1/3}\), so \((\sqrt[3]{125})^9 = (125^{1/3})^9 = 125^{9 \times 1/3} = 125^{9/3}\).
Now, compare \((125^{1/3})^9\) and \(125^{9/3}\).
They both simplify to \(125^{9/3}\).
Thus, the expressions in choice B are equivalent.
### Choice C: \(4^{1/5}\) and \((\sqrt{4})^5\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{4} = 4^{1/2}\), so \((\sqrt{4})^5 = (4^{1/2})^5 = 4^{5 \times 1/2} = 4^{5/2}\).
Now, compare \(4^{1/5}\) and \(4^{5/2}\).
Clearly, \(4^{1/5}\) is not equal to \(4^{5/2}\).
Thus, the expressions in choice C are not equivalent.
### Choice D: \(8^{9/2}\) and \((\sqrt{8})^9\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{8} = 8^{1/2}\), so \((\sqrt{8})^9 = (8^{1/2})^9 = 8^{9 \times 1/2} = 8^{9/2}\).
Now, compare \(8^{9/2}\) and \(8^{9/2}\).
They are clearly equal.
Thus, the expressions in choice D are equivalent.
### Conclusion
The pairs of equivalent expressions are:
- Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
- Choice D: [tex]\(8^{9/2}\)[/tex] and [tex]\((\sqrt{8})^9\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.