At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Which of these choices show a pair of equivalent expressions? Check all that apply.

A. [tex]$12^{2 / 7}$[/tex] and [tex]$(\sqrt[7]{12})^2$[/tex]

B. [tex]$(\sqrt[3]{125})^9$[/tex] and [tex]$125^{9 / 3}$[/tex]

C. [tex]$4^{1 / 5}$[/tex] and [tex]$(\sqrt[5]{4})$[/tex]

D. [tex]$8^{9 / 2}$[/tex] and [tex]$(\sqrt{8})^9$[/tex]


Sagot :

Let's analyze each of the given pairs of expressions to determine if they are equivalent.

### Choice A: \(12^{2/7}\) and \((\sqrt{12})^7\)

To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{12} = 12^{1/2}\), so \((\sqrt{12})^7 = (12^{1/2})^7 = 12^{7 \times 1/2} = 12^{7/2}\).

Now, compare \(12^{2/7}\) and \(12^{7/2}\).

Clearly, \(12^{2/7}\) is not equal to \(12^{7/2}\).

Thus, the expressions in choice A are not equivalent.

### Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)

To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt[3]{125} = 125^{1/3}\), so \((\sqrt[3]{125})^9 = (125^{1/3})^9 = 125^{9 \times 1/3} = 125^{9/3}\).

Now, compare \((125^{1/3})^9\) and \(125^{9/3}\).

They both simplify to \(125^{9/3}\).

Thus, the expressions in choice B are equivalent.

### Choice C: \(4^{1/5}\) and \((\sqrt{4})^5\)

To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{4} = 4^{1/2}\), so \((\sqrt{4})^5 = (4^{1/2})^5 = 4^{5 \times 1/2} = 4^{5/2}\).

Now, compare \(4^{1/5}\) and \(4^{5/2}\).

Clearly, \(4^{1/5}\) is not equal to \(4^{5/2}\).

Thus, the expressions in choice C are not equivalent.

### Choice D: \(8^{9/2}\) and \((\sqrt{8})^9\)

To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{8} = 8^{1/2}\), so \((\sqrt{8})^9 = (8^{1/2})^9 = 8^{9 \times 1/2} = 8^{9/2}\).

Now, compare \(8^{9/2}\) and \(8^{9/2}\).

They are clearly equal.

Thus, the expressions in choice D are equivalent.

### Conclusion

The pairs of equivalent expressions are:
- Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
- Choice D: [tex]\(8^{9/2}\)[/tex] and [tex]\((\sqrt{8})^9\)[/tex]