Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's analyze each of the given pairs of expressions to determine if they are equivalent.
### Choice A: \(12^{2/7}\) and \((\sqrt{12})^7\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{12} = 12^{1/2}\), so \((\sqrt{12})^7 = (12^{1/2})^7 = 12^{7 \times 1/2} = 12^{7/2}\).
Now, compare \(12^{2/7}\) and \(12^{7/2}\).
Clearly, \(12^{2/7}\) is not equal to \(12^{7/2}\).
Thus, the expressions in choice A are not equivalent.
### Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt[3]{125} = 125^{1/3}\), so \((\sqrt[3]{125})^9 = (125^{1/3})^9 = 125^{9 \times 1/3} = 125^{9/3}\).
Now, compare \((125^{1/3})^9\) and \(125^{9/3}\).
They both simplify to \(125^{9/3}\).
Thus, the expressions in choice B are equivalent.
### Choice C: \(4^{1/5}\) and \((\sqrt{4})^5\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{4} = 4^{1/2}\), so \((\sqrt{4})^5 = (4^{1/2})^5 = 4^{5 \times 1/2} = 4^{5/2}\).
Now, compare \(4^{1/5}\) and \(4^{5/2}\).
Clearly, \(4^{1/5}\) is not equal to \(4^{5/2}\).
Thus, the expressions in choice C are not equivalent.
### Choice D: \(8^{9/2}\) and \((\sqrt{8})^9\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{8} = 8^{1/2}\), so \((\sqrt{8})^9 = (8^{1/2})^9 = 8^{9 \times 1/2} = 8^{9/2}\).
Now, compare \(8^{9/2}\) and \(8^{9/2}\).
They are clearly equal.
Thus, the expressions in choice D are equivalent.
### Conclusion
The pairs of equivalent expressions are:
- Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
- Choice D: [tex]\(8^{9/2}\)[/tex] and [tex]\((\sqrt{8})^9\)[/tex]
### Choice A: \(12^{2/7}\) and \((\sqrt{12})^7\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{12} = 12^{1/2}\), so \((\sqrt{12})^7 = (12^{1/2})^7 = 12^{7 \times 1/2} = 12^{7/2}\).
Now, compare \(12^{2/7}\) and \(12^{7/2}\).
Clearly, \(12^{2/7}\) is not equal to \(12^{7/2}\).
Thus, the expressions in choice A are not equivalent.
### Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt[3]{125} = 125^{1/3}\), so \((\sqrt[3]{125})^9 = (125^{1/3})^9 = 125^{9 \times 1/3} = 125^{9/3}\).
Now, compare \((125^{1/3})^9\) and \(125^{9/3}\).
They both simplify to \(125^{9/3}\).
Thus, the expressions in choice B are equivalent.
### Choice C: \(4^{1/5}\) and \((\sqrt{4})^5\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{4} = 4^{1/2}\), so \((\sqrt{4})^5 = (4^{1/2})^5 = 4^{5 \times 1/2} = 4^{5/2}\).
Now, compare \(4^{1/5}\) and \(4^{5/2}\).
Clearly, \(4^{1/5}\) is not equal to \(4^{5/2}\).
Thus, the expressions in choice C are not equivalent.
### Choice D: \(8^{9/2}\) and \((\sqrt{8})^9\)
To check for equivalency, we can rewrite the second expression using the properties of exponents.
- \(\sqrt{8} = 8^{1/2}\), so \((\sqrt{8})^9 = (8^{1/2})^9 = 8^{9 \times 1/2} = 8^{9/2}\).
Now, compare \(8^{9/2}\) and \(8^{9/2}\).
They are clearly equal.
Thus, the expressions in choice D are equivalent.
### Conclusion
The pairs of equivalent expressions are:
- Choice B: \((\sqrt[3]{125})^9\) and \(125^{9/3}\)
- Choice D: [tex]\(8^{9/2}\)[/tex] and [tex]\((\sqrt{8})^9\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.