Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's break this down step-by-step to understand how to evaluate the expression \( -\frac{4 \pi r^3}{3} \).
### Step 1: Identify the components of the expression
The expression we are given is:
[tex]\[ -\frac{4 \pi r^3}{3} \][/tex]
Where:
- \(\pi\) (pi) is a constant approximately equal to 3.14159.
- \(r\) is the radius.
- The operation involves both multiplication and division.
### Step 2: Substitute the value of \(r\) into the expression
Let's say we have a value for the radius \(r = 5\).
### Step 3: Follow the order of operations (PEMDAS/BODMAS)
Evaluate the expression inside the fraction first.
#### Part A: Calculate \( r^3 \)
For \(r = 5\):
[tex]\[ r^3 = 5^3 = 125 \][/tex]
#### Part B: Multiply by \(\pi\)
[tex]\[ 4 \pi r^3 \][/tex]
[tex]\[ 4 \pi \cdot 125 \][/tex]
Given \(\pi\) is approximately 3.14159, we calculate:
[tex]\[ 4 \cdot 3.14159 \cdot 125 \][/tex]
#### Part C: Division by 3
[tex]\[ \frac{4 \pi r^3}{3} \][/tex]
So we take the above result and divide by 3.
### Step 4: Multiply by -1 to finalize since the expression is negative
After solving the division, we multiply the result by -1 to account for the negative sign at the beginning of the expression.
### Final Result
After performing these calculations step-by-step:
[tex]\[ -\frac{4 \pi r^3}{3} \][/tex]
For \(r = 5\):
[tex]\[ -\frac{4 \cdot 3.14159 \cdot 125}{3} \approx -523.5987755982989 \][/tex]
Thus, the value of the expression \( -\frac{4 \pi r^3}{3} \) for \(r = 5\) is approximately:
[tex]\[ -523.5987755982989 \][/tex]
This is the exact numerical result of the given expression.
### Step 1: Identify the components of the expression
The expression we are given is:
[tex]\[ -\frac{4 \pi r^3}{3} \][/tex]
Where:
- \(\pi\) (pi) is a constant approximately equal to 3.14159.
- \(r\) is the radius.
- The operation involves both multiplication and division.
### Step 2: Substitute the value of \(r\) into the expression
Let's say we have a value for the radius \(r = 5\).
### Step 3: Follow the order of operations (PEMDAS/BODMAS)
Evaluate the expression inside the fraction first.
#### Part A: Calculate \( r^3 \)
For \(r = 5\):
[tex]\[ r^3 = 5^3 = 125 \][/tex]
#### Part B: Multiply by \(\pi\)
[tex]\[ 4 \pi r^3 \][/tex]
[tex]\[ 4 \pi \cdot 125 \][/tex]
Given \(\pi\) is approximately 3.14159, we calculate:
[tex]\[ 4 \cdot 3.14159 \cdot 125 \][/tex]
#### Part C: Division by 3
[tex]\[ \frac{4 \pi r^3}{3} \][/tex]
So we take the above result and divide by 3.
### Step 4: Multiply by -1 to finalize since the expression is negative
After solving the division, we multiply the result by -1 to account for the negative sign at the beginning of the expression.
### Final Result
After performing these calculations step-by-step:
[tex]\[ -\frac{4 \pi r^3}{3} \][/tex]
For \(r = 5\):
[tex]\[ -\frac{4 \cdot 3.14159 \cdot 125}{3} \approx -523.5987755982989 \][/tex]
Thus, the value of the expression \( -\frac{4 \pi r^3}{3} \) for \(r = 5\) is approximately:
[tex]\[ -523.5987755982989 \][/tex]
This is the exact numerical result of the given expression.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.