Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the expression \(\frac{\left(\frac{3}{4}+\frac{7}{8}\right)}{\left(\frac{2}{5}-\frac{8}{9}\right)}\), let's break it down step-by-step.
### Step 1: Calculate the Numerator
The numerator of the expression is \(\frac{3}{4} + \frac{7}{8}\).
First, find a common denominator for \(\frac{3}{4}\) and \(\frac{7}{8}\). The least common denominator (LCD) of 4 and 8 is 8.
Convert \(\frac{3}{4}\) to an equivalent fraction with the denominator 8:
[tex]\[ \frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8} \][/tex]
Now, add \(\frac{6}{8}\) and \(\frac{7}{8}\):
[tex]\[ \frac{6}{8} + \frac{7}{8} = \frac{6 + 7}{8} = \frac{13}{8} \][/tex]
### Step 2: Calculate the Denominator
The denominator of the expression is \(\frac{2}{5} - \frac{8}{9}\).
First, find a common denominator for \(\frac{2}{5}\) and \(\frac{8}{9}\). The least common denominator (LCD) of 5 and 9 is 45.
Convert \(\frac{2}{5}\) to an equivalent fraction with the denominator 45:
[tex]\[ \frac{2}{5} = \frac{2 \times 9}{5 \times 9} = \frac{18}{45} \][/tex]
Convert \(\frac{8}{9}\) to an equivalent fraction with the denominator 45:
[tex]\[ \frac{8}{9} = \frac{8 \times 5}{9 \times 5} = \frac{40}{45} \][/tex]
Now, subtract \(\frac{40}{45}\) from \(\frac{18}{45}\):
[tex]\[ \frac{18}{45} - \frac{40}{45} = \frac{18 - 40}{45} = \frac{-22}{45} \][/tex]
### Step 3: Compute the Final Fraction
We have the numerator \(\frac{13}{8}\) and the denominator \(\frac{-22}{45}\). Now, we need to divide \(\frac{13}{8}\) by \(\frac{-22}{45}\).
Dividing by a fraction is the same as multiplying by its reciprocal. Therefore:
[tex]\[ \frac{\frac{13}{8}}{\frac{-22}{45}} = \frac{13}{8} \times \frac{45}{-22} = \frac{13 \times 45}{8 \times -22} = \frac{585}{-176} \][/tex]
Simplify the fraction (if it can be simplified further):
[tex]\[ \frac{585}{-176} = -\frac{585}{176} \][/tex]
Upon simplifying, we get the approximate result:
[tex]\[ -\frac{585}{176} \approx -3.3238636363636367 \][/tex]
Therefore, the final value of the expression [tex]\(\frac{\left(\frac{3}{4}+\frac{7}{8}\right)}{\left(\frac{2}{5}-\frac{8}{9}\right)}\)[/tex] is [tex]\(-3.3238636363636367\)[/tex].
### Step 1: Calculate the Numerator
The numerator of the expression is \(\frac{3}{4} + \frac{7}{8}\).
First, find a common denominator for \(\frac{3}{4}\) and \(\frac{7}{8}\). The least common denominator (LCD) of 4 and 8 is 8.
Convert \(\frac{3}{4}\) to an equivalent fraction with the denominator 8:
[tex]\[ \frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8} \][/tex]
Now, add \(\frac{6}{8}\) and \(\frac{7}{8}\):
[tex]\[ \frac{6}{8} + \frac{7}{8} = \frac{6 + 7}{8} = \frac{13}{8} \][/tex]
### Step 2: Calculate the Denominator
The denominator of the expression is \(\frac{2}{5} - \frac{8}{9}\).
First, find a common denominator for \(\frac{2}{5}\) and \(\frac{8}{9}\). The least common denominator (LCD) of 5 and 9 is 45.
Convert \(\frac{2}{5}\) to an equivalent fraction with the denominator 45:
[tex]\[ \frac{2}{5} = \frac{2 \times 9}{5 \times 9} = \frac{18}{45} \][/tex]
Convert \(\frac{8}{9}\) to an equivalent fraction with the denominator 45:
[tex]\[ \frac{8}{9} = \frac{8 \times 5}{9 \times 5} = \frac{40}{45} \][/tex]
Now, subtract \(\frac{40}{45}\) from \(\frac{18}{45}\):
[tex]\[ \frac{18}{45} - \frac{40}{45} = \frac{18 - 40}{45} = \frac{-22}{45} \][/tex]
### Step 3: Compute the Final Fraction
We have the numerator \(\frac{13}{8}\) and the denominator \(\frac{-22}{45}\). Now, we need to divide \(\frac{13}{8}\) by \(\frac{-22}{45}\).
Dividing by a fraction is the same as multiplying by its reciprocal. Therefore:
[tex]\[ \frac{\frac{13}{8}}{\frac{-22}{45}} = \frac{13}{8} \times \frac{45}{-22} = \frac{13 \times 45}{8 \times -22} = \frac{585}{-176} \][/tex]
Simplify the fraction (if it can be simplified further):
[tex]\[ \frac{585}{-176} = -\frac{585}{176} \][/tex]
Upon simplifying, we get the approximate result:
[tex]\[ -\frac{585}{176} \approx -3.3238636363636367 \][/tex]
Therefore, the final value of the expression [tex]\(\frac{\left(\frac{3}{4}+\frac{7}{8}\right)}{\left(\frac{2}{5}-\frac{8}{9}\right)}\)[/tex] is [tex]\(-3.3238636363636367\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.