Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the expression \(\frac{\left(\frac{3}{4}+\frac{7}{8}\right)}{\left(\frac{2}{5}-\frac{8}{9}\right)}\), let's break it down step-by-step.
### Step 1: Calculate the Numerator
The numerator of the expression is \(\frac{3}{4} + \frac{7}{8}\).
First, find a common denominator for \(\frac{3}{4}\) and \(\frac{7}{8}\). The least common denominator (LCD) of 4 and 8 is 8.
Convert \(\frac{3}{4}\) to an equivalent fraction with the denominator 8:
[tex]\[ \frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8} \][/tex]
Now, add \(\frac{6}{8}\) and \(\frac{7}{8}\):
[tex]\[ \frac{6}{8} + \frac{7}{8} = \frac{6 + 7}{8} = \frac{13}{8} \][/tex]
### Step 2: Calculate the Denominator
The denominator of the expression is \(\frac{2}{5} - \frac{8}{9}\).
First, find a common denominator for \(\frac{2}{5}\) and \(\frac{8}{9}\). The least common denominator (LCD) of 5 and 9 is 45.
Convert \(\frac{2}{5}\) to an equivalent fraction with the denominator 45:
[tex]\[ \frac{2}{5} = \frac{2 \times 9}{5 \times 9} = \frac{18}{45} \][/tex]
Convert \(\frac{8}{9}\) to an equivalent fraction with the denominator 45:
[tex]\[ \frac{8}{9} = \frac{8 \times 5}{9 \times 5} = \frac{40}{45} \][/tex]
Now, subtract \(\frac{40}{45}\) from \(\frac{18}{45}\):
[tex]\[ \frac{18}{45} - \frac{40}{45} = \frac{18 - 40}{45} = \frac{-22}{45} \][/tex]
### Step 3: Compute the Final Fraction
We have the numerator \(\frac{13}{8}\) and the denominator \(\frac{-22}{45}\). Now, we need to divide \(\frac{13}{8}\) by \(\frac{-22}{45}\).
Dividing by a fraction is the same as multiplying by its reciprocal. Therefore:
[tex]\[ \frac{\frac{13}{8}}{\frac{-22}{45}} = \frac{13}{8} \times \frac{45}{-22} = \frac{13 \times 45}{8 \times -22} = \frac{585}{-176} \][/tex]
Simplify the fraction (if it can be simplified further):
[tex]\[ \frac{585}{-176} = -\frac{585}{176} \][/tex]
Upon simplifying, we get the approximate result:
[tex]\[ -\frac{585}{176} \approx -3.3238636363636367 \][/tex]
Therefore, the final value of the expression [tex]\(\frac{\left(\frac{3}{4}+\frac{7}{8}\right)}{\left(\frac{2}{5}-\frac{8}{9}\right)}\)[/tex] is [tex]\(-3.3238636363636367\)[/tex].
### Step 1: Calculate the Numerator
The numerator of the expression is \(\frac{3}{4} + \frac{7}{8}\).
First, find a common denominator for \(\frac{3}{4}\) and \(\frac{7}{8}\). The least common denominator (LCD) of 4 and 8 is 8.
Convert \(\frac{3}{4}\) to an equivalent fraction with the denominator 8:
[tex]\[ \frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8} \][/tex]
Now, add \(\frac{6}{8}\) and \(\frac{7}{8}\):
[tex]\[ \frac{6}{8} + \frac{7}{8} = \frac{6 + 7}{8} = \frac{13}{8} \][/tex]
### Step 2: Calculate the Denominator
The denominator of the expression is \(\frac{2}{5} - \frac{8}{9}\).
First, find a common denominator for \(\frac{2}{5}\) and \(\frac{8}{9}\). The least common denominator (LCD) of 5 and 9 is 45.
Convert \(\frac{2}{5}\) to an equivalent fraction with the denominator 45:
[tex]\[ \frac{2}{5} = \frac{2 \times 9}{5 \times 9} = \frac{18}{45} \][/tex]
Convert \(\frac{8}{9}\) to an equivalent fraction with the denominator 45:
[tex]\[ \frac{8}{9} = \frac{8 \times 5}{9 \times 5} = \frac{40}{45} \][/tex]
Now, subtract \(\frac{40}{45}\) from \(\frac{18}{45}\):
[tex]\[ \frac{18}{45} - \frac{40}{45} = \frac{18 - 40}{45} = \frac{-22}{45} \][/tex]
### Step 3: Compute the Final Fraction
We have the numerator \(\frac{13}{8}\) and the denominator \(\frac{-22}{45}\). Now, we need to divide \(\frac{13}{8}\) by \(\frac{-22}{45}\).
Dividing by a fraction is the same as multiplying by its reciprocal. Therefore:
[tex]\[ \frac{\frac{13}{8}}{\frac{-22}{45}} = \frac{13}{8} \times \frac{45}{-22} = \frac{13 \times 45}{8 \times -22} = \frac{585}{-176} \][/tex]
Simplify the fraction (if it can be simplified further):
[tex]\[ \frac{585}{-176} = -\frac{585}{176} \][/tex]
Upon simplifying, we get the approximate result:
[tex]\[ -\frac{585}{176} \approx -3.3238636363636367 \][/tex]
Therefore, the final value of the expression [tex]\(\frac{\left(\frac{3}{4}+\frac{7}{8}\right)}{\left(\frac{2}{5}-\frac{8}{9}\right)}\)[/tex] is [tex]\(-3.3238636363636367\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.