Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's carefully detail the steps required to solve the problem and then fill out the appropriate selections in the drop-down menu.
1. Understanding the Problem:
- Mass of the roller coaster car, \( m \), is 100 kilograms.
- Speed at the top of the hill, \( v_{\text{top}} \), is 3 meters/second.
- Speed at the bottom of the hill, \( v_{\text{bottom}} \), is double the speed at the top. Therefore, \( v_{\text{bottom}} = 2 \times 3 = 6 \) meters/second.
2. Kinetic Energy Calculation at the Top of the Hill:
- The formula for kinetic energy is \( KE = \frac{1}{2} m v^2 \).
- Substituting the values for the top of the hill:
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \times 3^2 = \frac{1}{2} \times 100 \times 9 = 50 \times 9 = 450 \text{ joules} \][/tex]
3. Kinetic Energy Calculation at the Bottom of the Hill:
- Using the same kinetic energy formula for the bottom:
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \times 6^2 = \frac{1}{2} \times 100 \times 36 = 50 \times 36 = 1800 \text{ joules} \][/tex]
4. Filling in the Drop-down Menu:
- Kinetic energy at the bottom of the hill is \( 1800 \text{ joules} \).
- Kinetic energy at the top of the hill is \( 450 \text{ joules} \).
So, the car's kinetic energy at the bottom is [tex]\( \boxed{1800} \)[/tex] joules of kinetic energy at the bottom of the hill. The car has [tex]\( \boxed{450} \)[/tex] joules of kinetic energy at the top.
1. Understanding the Problem:
- Mass of the roller coaster car, \( m \), is 100 kilograms.
- Speed at the top of the hill, \( v_{\text{top}} \), is 3 meters/second.
- Speed at the bottom of the hill, \( v_{\text{bottom}} \), is double the speed at the top. Therefore, \( v_{\text{bottom}} = 2 \times 3 = 6 \) meters/second.
2. Kinetic Energy Calculation at the Top of the Hill:
- The formula for kinetic energy is \( KE = \frac{1}{2} m v^2 \).
- Substituting the values for the top of the hill:
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \times 3^2 = \frac{1}{2} \times 100 \times 9 = 50 \times 9 = 450 \text{ joules} \][/tex]
3. Kinetic Energy Calculation at the Bottom of the Hill:
- Using the same kinetic energy formula for the bottom:
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \times 6^2 = \frac{1}{2} \times 100 \times 36 = 50 \times 36 = 1800 \text{ joules} \][/tex]
4. Filling in the Drop-down Menu:
- Kinetic energy at the bottom of the hill is \( 1800 \text{ joules} \).
- Kinetic energy at the top of the hill is \( 450 \text{ joules} \).
So, the car's kinetic energy at the bottom is [tex]\( \boxed{1800} \)[/tex] joules of kinetic energy at the bottom of the hill. The car has [tex]\( \boxed{450} \)[/tex] joules of kinetic energy at the top.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.