Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To identify the table that represents the second piece of the function \( f(x) \), defined as:
[tex]\[ f(x) = \left\{ \begin{array}{ll} -3.5x + 0.5, & \text{ for } x < 1 \\ 8 - 2x, & \text{ for } x \geq 1 \end{array} \right. \][/tex]
we will evaluate the second part of this piecewise function for \( x \geq 1 \), at several integer values of \( x \).
### Evaluating \( f(x) = 8 - 2x \):
1. For \( x = 1 \):
[tex]\[ f(1) = 8 - 2(1) = 8 - 2 = 6 \][/tex]
2. For \( x = 2 \):
[tex]\[ f(2) = 8 - 2(2) = 8 - 4 = 4 \][/tex]
3. For \( x = 3 \):
[tex]\[ f(3) = 8 - 2(3) = 8 - 6 = 2 \][/tex]
Now that we have evaluated the function, we can compile the results into a table:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 1 & 6 \\ \hline 2 & 4 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]
Hence, the table representing the second piece of the function \( f(x) = 8 - 2x \) for \( x \geq 1 \) is:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 1 & 6 \\ \hline 2 & 4 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]
This corresponds to the third table provided in the question.
[tex]\[ f(x) = \left\{ \begin{array}{ll} -3.5x + 0.5, & \text{ for } x < 1 \\ 8 - 2x, & \text{ for } x \geq 1 \end{array} \right. \][/tex]
we will evaluate the second part of this piecewise function for \( x \geq 1 \), at several integer values of \( x \).
### Evaluating \( f(x) = 8 - 2x \):
1. For \( x = 1 \):
[tex]\[ f(1) = 8 - 2(1) = 8 - 2 = 6 \][/tex]
2. For \( x = 2 \):
[tex]\[ f(2) = 8 - 2(2) = 8 - 4 = 4 \][/tex]
3. For \( x = 3 \):
[tex]\[ f(3) = 8 - 2(3) = 8 - 6 = 2 \][/tex]
Now that we have evaluated the function, we can compile the results into a table:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 1 & 6 \\ \hline 2 & 4 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]
Hence, the table representing the second piece of the function \( f(x) = 8 - 2x \) for \( x \geq 1 \) is:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 1 & 6 \\ \hline 2 & 4 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]
This corresponds to the third table provided in the question.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.