Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which marble has the highest kinetic energy at the bottom of the ramp, we need to calculate the kinetic energy for each marble. The kinetic energy (KE) can be calculated using the formula:
[tex]\[ KE = \frac{1}{2}mv^2 \][/tex]
where
- \( m \) is the mass of the marble in kilograms (kg),
- \( v \) is the speed of the marble in meters per second (m/s), which is given as 3 m/s for all marbles.
First, let's convert the mass of each marble from grams to kilograms because the standard unit for mass in physics calculations is kilograms.
[tex]\[ \text{Mass in kilograms} = \text{Mass in grams} / 1000 \][/tex]
Here are the masses of the marbles in kilograms:
- Marble 1: \( 10 \, \text{g} = 10 / 1000 = 0.01 \, \text{kg} \)
- Marble 2: \( 20 \, \text{g} = 20 / 1000 = 0.02 \, \text{kg} \)
- Marble 3: \( 25 \, \text{g} = 25 / 1000 = 0.025 \, \text{kg} \)
- Marble 4: \( 40 \, \text{g} = 40 / 1000 = 0.04 \, \text{kg} \)
- Marble 5: \( 30 \, \text{g} = 30 / 1000 = 0.03 \, \text{kg} \)
Next, we calculate the kinetic energy for each marble:
- For Marble 1:
[tex]\[ KE_1 = \frac{1}{2} \times 0.01 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.01 \times 9 = 0.045 \, \text{Joules} \][/tex]
- For Marble 2:
[tex]\[ KE_2 = \frac{1}{2} \times 0.02 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.02 \times 9 = 0.09 \, \text{Joules} \][/tex]
- For Marble 3:
[tex]\[ KE_3 = \frac{1}{2} \times 0.025 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.025 \times 9 = 0.1125 \, \text{Joules} \][/tex]
- For Marble 4:
[tex]\[ KE_4 = \frac{1}{2} \times 0.04 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.04 \times 9 = 0.18 \, \text{Joules} \][/tex]
- For Marble 5:
[tex]\[ KE_5 = \frac{1}{2} \times 0.03 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.03 \times 9 = 0.135 \, \text{Joules} \][/tex]
Comparing these kinetic energies:
- Marble 1: \( 0.045 \, \text{J} \)
- Marble 2: \( 0.09 \, \text{J} \)
- Marble 3: \( 0.1125 \, \text{J} \)
- Marble 4: \( 0.18 \, \text{J} \)
- Marble 5: \( 0.135 \, \text{J} \)
The marble with the highest kinetic energy is Marble 4 with \( 0.18 \, \text{J} \).
Therefore, the correct answer is:
D. Marble 4
[tex]\[ KE = \frac{1}{2}mv^2 \][/tex]
where
- \( m \) is the mass of the marble in kilograms (kg),
- \( v \) is the speed of the marble in meters per second (m/s), which is given as 3 m/s for all marbles.
First, let's convert the mass of each marble from grams to kilograms because the standard unit for mass in physics calculations is kilograms.
[tex]\[ \text{Mass in kilograms} = \text{Mass in grams} / 1000 \][/tex]
Here are the masses of the marbles in kilograms:
- Marble 1: \( 10 \, \text{g} = 10 / 1000 = 0.01 \, \text{kg} \)
- Marble 2: \( 20 \, \text{g} = 20 / 1000 = 0.02 \, \text{kg} \)
- Marble 3: \( 25 \, \text{g} = 25 / 1000 = 0.025 \, \text{kg} \)
- Marble 4: \( 40 \, \text{g} = 40 / 1000 = 0.04 \, \text{kg} \)
- Marble 5: \( 30 \, \text{g} = 30 / 1000 = 0.03 \, \text{kg} \)
Next, we calculate the kinetic energy for each marble:
- For Marble 1:
[tex]\[ KE_1 = \frac{1}{2} \times 0.01 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.01 \times 9 = 0.045 \, \text{Joules} \][/tex]
- For Marble 2:
[tex]\[ KE_2 = \frac{1}{2} \times 0.02 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.02 \times 9 = 0.09 \, \text{Joules} \][/tex]
- For Marble 3:
[tex]\[ KE_3 = \frac{1}{2} \times 0.025 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.025 \times 9 = 0.1125 \, \text{Joules} \][/tex]
- For Marble 4:
[tex]\[ KE_4 = \frac{1}{2} \times 0.04 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.04 \times 9 = 0.18 \, \text{Joules} \][/tex]
- For Marble 5:
[tex]\[ KE_5 = \frac{1}{2} \times 0.03 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.03 \times 9 = 0.135 \, \text{Joules} \][/tex]
Comparing these kinetic energies:
- Marble 1: \( 0.045 \, \text{J} \)
- Marble 2: \( 0.09 \, \text{J} \)
- Marble 3: \( 0.1125 \, \text{J} \)
- Marble 4: \( 0.18 \, \text{J} \)
- Marble 5: \( 0.135 \, \text{J} \)
The marble with the highest kinetic energy is Marble 4 with \( 0.18 \, \text{J} \).
Therefore, the correct answer is:
D. Marble 4
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.