Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which marble has the highest kinetic energy at the bottom of the ramp, we need to calculate the kinetic energy for each marble. The kinetic energy (KE) can be calculated using the formula:
[tex]\[ KE = \frac{1}{2}mv^2 \][/tex]
where
- \( m \) is the mass of the marble in kilograms (kg),
- \( v \) is the speed of the marble in meters per second (m/s), which is given as 3 m/s for all marbles.
First, let's convert the mass of each marble from grams to kilograms because the standard unit for mass in physics calculations is kilograms.
[tex]\[ \text{Mass in kilograms} = \text{Mass in grams} / 1000 \][/tex]
Here are the masses of the marbles in kilograms:
- Marble 1: \( 10 \, \text{g} = 10 / 1000 = 0.01 \, \text{kg} \)
- Marble 2: \( 20 \, \text{g} = 20 / 1000 = 0.02 \, \text{kg} \)
- Marble 3: \( 25 \, \text{g} = 25 / 1000 = 0.025 \, \text{kg} \)
- Marble 4: \( 40 \, \text{g} = 40 / 1000 = 0.04 \, \text{kg} \)
- Marble 5: \( 30 \, \text{g} = 30 / 1000 = 0.03 \, \text{kg} \)
Next, we calculate the kinetic energy for each marble:
- For Marble 1:
[tex]\[ KE_1 = \frac{1}{2} \times 0.01 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.01 \times 9 = 0.045 \, \text{Joules} \][/tex]
- For Marble 2:
[tex]\[ KE_2 = \frac{1}{2} \times 0.02 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.02 \times 9 = 0.09 \, \text{Joules} \][/tex]
- For Marble 3:
[tex]\[ KE_3 = \frac{1}{2} \times 0.025 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.025 \times 9 = 0.1125 \, \text{Joules} \][/tex]
- For Marble 4:
[tex]\[ KE_4 = \frac{1}{2} \times 0.04 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.04 \times 9 = 0.18 \, \text{Joules} \][/tex]
- For Marble 5:
[tex]\[ KE_5 = \frac{1}{2} \times 0.03 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.03 \times 9 = 0.135 \, \text{Joules} \][/tex]
Comparing these kinetic energies:
- Marble 1: \( 0.045 \, \text{J} \)
- Marble 2: \( 0.09 \, \text{J} \)
- Marble 3: \( 0.1125 \, \text{J} \)
- Marble 4: \( 0.18 \, \text{J} \)
- Marble 5: \( 0.135 \, \text{J} \)
The marble with the highest kinetic energy is Marble 4 with \( 0.18 \, \text{J} \).
Therefore, the correct answer is:
D. Marble 4
[tex]\[ KE = \frac{1}{2}mv^2 \][/tex]
where
- \( m \) is the mass of the marble in kilograms (kg),
- \( v \) is the speed of the marble in meters per second (m/s), which is given as 3 m/s for all marbles.
First, let's convert the mass of each marble from grams to kilograms because the standard unit for mass in physics calculations is kilograms.
[tex]\[ \text{Mass in kilograms} = \text{Mass in grams} / 1000 \][/tex]
Here are the masses of the marbles in kilograms:
- Marble 1: \( 10 \, \text{g} = 10 / 1000 = 0.01 \, \text{kg} \)
- Marble 2: \( 20 \, \text{g} = 20 / 1000 = 0.02 \, \text{kg} \)
- Marble 3: \( 25 \, \text{g} = 25 / 1000 = 0.025 \, \text{kg} \)
- Marble 4: \( 40 \, \text{g} = 40 / 1000 = 0.04 \, \text{kg} \)
- Marble 5: \( 30 \, \text{g} = 30 / 1000 = 0.03 \, \text{kg} \)
Next, we calculate the kinetic energy for each marble:
- For Marble 1:
[tex]\[ KE_1 = \frac{1}{2} \times 0.01 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.01 \times 9 = 0.045 \, \text{Joules} \][/tex]
- For Marble 2:
[tex]\[ KE_2 = \frac{1}{2} \times 0.02 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.02 \times 9 = 0.09 \, \text{Joules} \][/tex]
- For Marble 3:
[tex]\[ KE_3 = \frac{1}{2} \times 0.025 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.025 \times 9 = 0.1125 \, \text{Joules} \][/tex]
- For Marble 4:
[tex]\[ KE_4 = \frac{1}{2} \times 0.04 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.04 \times 9 = 0.18 \, \text{Joules} \][/tex]
- For Marble 5:
[tex]\[ KE_5 = \frac{1}{2} \times 0.03 \, \text{kg} \times (3 \, \text{m/s})^2 = 0.5 \times 0.03 \times 9 = 0.135 \, \text{Joules} \][/tex]
Comparing these kinetic energies:
- Marble 1: \( 0.045 \, \text{J} \)
- Marble 2: \( 0.09 \, \text{J} \)
- Marble 3: \( 0.1125 \, \text{J} \)
- Marble 4: \( 0.18 \, \text{J} \)
- Marble 5: \( 0.135 \, \text{J} \)
The marble with the highest kinetic energy is Marble 4 with \( 0.18 \, \text{J} \).
Therefore, the correct answer is:
D. Marble 4
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.