At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the given polynomial step by step.
The polynomial \( P(x) \) is given by:
[tex]\[ P(x) = x^3 + 216 \][/tex]
### (a) Finding all zeros of \( P \), real and complex:
To find the zeros of the polynomial, we set \( P(x) \) equal to zero:
[tex]\[ x^3 + 216 = 0 \][/tex]
First, we can rewrite this equation as:
[tex]\[ x^3 = -216 \][/tex]
To solve for \( x \), we can take the cube root of both sides. The cube root of \(-216\) provides us with one real root and two complex roots. The real root is:
[tex]\[ x = -6 \][/tex]
For the complex roots, we need the complex cube roots of \(-216\). These roots can be expressed as:
[tex]\[ x = 3( \sqrt[3]{-1} ) = 3 \left( -1 \right) = -3 \][/tex]
However, since cube roots involve complex numbers, we consider the unit roots in the complex plane.
The complex roots include:
[tex]\[ 3 \left( e^{i (\frac{2\pi}{3} + \frac{4\pi n}{3})} \right) \][/tex]
where \( n \) is an integer.
These roots simplify to:
[tex]\[ x = 3 - 3\sqrt{3}i \quad \text{and} \quad x = 3 + 3\sqrt{3}i \][/tex]
So, the complete list of zeros is:
[tex]\[ x = -6, \ x = 3 - 3\sqrt{3}i, \ x = 3 + 3\sqrt{3}i \][/tex]
Therefore, the zeros of the polynomial \( P(x) = x^3 + 216 \) are:
[tex]\[ x = -6, 3 - 3\sqrt{3}i, 3 + 3\sqrt{3}i \][/tex]
### (b) Factor \( P \) completely:
Given that we have found all the zeros, we can factor the polynomial using these roots. The polynomial can be written as:
[tex]\[ P(x) = (x + 6) (x^2 - 6x + 36) \][/tex]
Here’s the reasoning:
1. We know that \( x = -6 \) is a zero, so \( (x + 6) \) is a factor.
2. Dividing \( x^3 + 216 \) by \( (x + 6) \) results in the quadratic \(x^2 - 6x + 36 \).
Thus, factoring completely, we get:
[tex]\[ P(x) = (x + 6) (x^2 - 6x + 36) \][/tex]
Therefore, the fully factored form of \( P(x) \) is:
[tex]\[ P(x) = (x + 6)(x^2 - 6x + 36) \][/tex]
The polynomial \( P(x) \) is given by:
[tex]\[ P(x) = x^3 + 216 \][/tex]
### (a) Finding all zeros of \( P \), real and complex:
To find the zeros of the polynomial, we set \( P(x) \) equal to zero:
[tex]\[ x^3 + 216 = 0 \][/tex]
First, we can rewrite this equation as:
[tex]\[ x^3 = -216 \][/tex]
To solve for \( x \), we can take the cube root of both sides. The cube root of \(-216\) provides us with one real root and two complex roots. The real root is:
[tex]\[ x = -6 \][/tex]
For the complex roots, we need the complex cube roots of \(-216\). These roots can be expressed as:
[tex]\[ x = 3( \sqrt[3]{-1} ) = 3 \left( -1 \right) = -3 \][/tex]
However, since cube roots involve complex numbers, we consider the unit roots in the complex plane.
The complex roots include:
[tex]\[ 3 \left( e^{i (\frac{2\pi}{3} + \frac{4\pi n}{3})} \right) \][/tex]
where \( n \) is an integer.
These roots simplify to:
[tex]\[ x = 3 - 3\sqrt{3}i \quad \text{and} \quad x = 3 + 3\sqrt{3}i \][/tex]
So, the complete list of zeros is:
[tex]\[ x = -6, \ x = 3 - 3\sqrt{3}i, \ x = 3 + 3\sqrt{3}i \][/tex]
Therefore, the zeros of the polynomial \( P(x) = x^3 + 216 \) are:
[tex]\[ x = -6, 3 - 3\sqrt{3}i, 3 + 3\sqrt{3}i \][/tex]
### (b) Factor \( P \) completely:
Given that we have found all the zeros, we can factor the polynomial using these roots. The polynomial can be written as:
[tex]\[ P(x) = (x + 6) (x^2 - 6x + 36) \][/tex]
Here’s the reasoning:
1. We know that \( x = -6 \) is a zero, so \( (x + 6) \) is a factor.
2. Dividing \( x^3 + 216 \) by \( (x + 6) \) results in the quadratic \(x^2 - 6x + 36 \).
Thus, factoring completely, we get:
[tex]\[ P(x) = (x + 6) (x^2 - 6x + 36) \][/tex]
Therefore, the fully factored form of \( P(x) \) is:
[tex]\[ P(x) = (x + 6)(x^2 - 6x + 36) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.