Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the given polynomial step by step.
The polynomial \( P(x) \) is given by:
[tex]\[ P(x) = x^3 + 216 \][/tex]
### (a) Finding all zeros of \( P \), real and complex:
To find the zeros of the polynomial, we set \( P(x) \) equal to zero:
[tex]\[ x^3 + 216 = 0 \][/tex]
First, we can rewrite this equation as:
[tex]\[ x^3 = -216 \][/tex]
To solve for \( x \), we can take the cube root of both sides. The cube root of \(-216\) provides us with one real root and two complex roots. The real root is:
[tex]\[ x = -6 \][/tex]
For the complex roots, we need the complex cube roots of \(-216\). These roots can be expressed as:
[tex]\[ x = 3( \sqrt[3]{-1} ) = 3 \left( -1 \right) = -3 \][/tex]
However, since cube roots involve complex numbers, we consider the unit roots in the complex plane.
The complex roots include:
[tex]\[ 3 \left( e^{i (\frac{2\pi}{3} + \frac{4\pi n}{3})} \right) \][/tex]
where \( n \) is an integer.
These roots simplify to:
[tex]\[ x = 3 - 3\sqrt{3}i \quad \text{and} \quad x = 3 + 3\sqrt{3}i \][/tex]
So, the complete list of zeros is:
[tex]\[ x = -6, \ x = 3 - 3\sqrt{3}i, \ x = 3 + 3\sqrt{3}i \][/tex]
Therefore, the zeros of the polynomial \( P(x) = x^3 + 216 \) are:
[tex]\[ x = -6, 3 - 3\sqrt{3}i, 3 + 3\sqrt{3}i \][/tex]
### (b) Factor \( P \) completely:
Given that we have found all the zeros, we can factor the polynomial using these roots. The polynomial can be written as:
[tex]\[ P(x) = (x + 6) (x^2 - 6x + 36) \][/tex]
Here’s the reasoning:
1. We know that \( x = -6 \) is a zero, so \( (x + 6) \) is a factor.
2. Dividing \( x^3 + 216 \) by \( (x + 6) \) results in the quadratic \(x^2 - 6x + 36 \).
Thus, factoring completely, we get:
[tex]\[ P(x) = (x + 6) (x^2 - 6x + 36) \][/tex]
Therefore, the fully factored form of \( P(x) \) is:
[tex]\[ P(x) = (x + 6)(x^2 - 6x + 36) \][/tex]
The polynomial \( P(x) \) is given by:
[tex]\[ P(x) = x^3 + 216 \][/tex]
### (a) Finding all zeros of \( P \), real and complex:
To find the zeros of the polynomial, we set \( P(x) \) equal to zero:
[tex]\[ x^3 + 216 = 0 \][/tex]
First, we can rewrite this equation as:
[tex]\[ x^3 = -216 \][/tex]
To solve for \( x \), we can take the cube root of both sides. The cube root of \(-216\) provides us with one real root and two complex roots. The real root is:
[tex]\[ x = -6 \][/tex]
For the complex roots, we need the complex cube roots of \(-216\). These roots can be expressed as:
[tex]\[ x = 3( \sqrt[3]{-1} ) = 3 \left( -1 \right) = -3 \][/tex]
However, since cube roots involve complex numbers, we consider the unit roots in the complex plane.
The complex roots include:
[tex]\[ 3 \left( e^{i (\frac{2\pi}{3} + \frac{4\pi n}{3})} \right) \][/tex]
where \( n \) is an integer.
These roots simplify to:
[tex]\[ x = 3 - 3\sqrt{3}i \quad \text{and} \quad x = 3 + 3\sqrt{3}i \][/tex]
So, the complete list of zeros is:
[tex]\[ x = -6, \ x = 3 - 3\sqrt{3}i, \ x = 3 + 3\sqrt{3}i \][/tex]
Therefore, the zeros of the polynomial \( P(x) = x^3 + 216 \) are:
[tex]\[ x = -6, 3 - 3\sqrt{3}i, 3 + 3\sqrt{3}i \][/tex]
### (b) Factor \( P \) completely:
Given that we have found all the zeros, we can factor the polynomial using these roots. The polynomial can be written as:
[tex]\[ P(x) = (x + 6) (x^2 - 6x + 36) \][/tex]
Here’s the reasoning:
1. We know that \( x = -6 \) is a zero, so \( (x + 6) \) is a factor.
2. Dividing \( x^3 + 216 \) by \( (x + 6) \) results in the quadratic \(x^2 - 6x + 36 \).
Thus, factoring completely, we get:
[tex]\[ P(x) = (x + 6) (x^2 - 6x + 36) \][/tex]
Therefore, the fully factored form of \( P(x) \) is:
[tex]\[ P(x) = (x + 6)(x^2 - 6x + 36) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.