Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the values of \(a\) and \(b\) for the exponential function \(f(x) = ab^x\) passing through the points \((0, 11000)\) and \((3, 704)\), we can follow these steps:
1. Using the point (0, 11000):
When \(x = 0\), \(f(x) = a b^0 = a\). So, from the point \((0, 11000)\),
[tex]\[ f(0) = a = 11000. \][/tex]
Therefore,
[tex]\[ a = 11000. \][/tex]
2. Using the point (3, 704):
When \(x = 3\), \(f(x) = ab^3\). So, from the point \((3, 704)\),
[tex]\[ f(3) = 11000b^3 = 704. \][/tex]
3. Solve for \(b\):
We set up the equation from the above point:
[tex]\[ 11000b^3 = 704. \][/tex]
To isolate \(b^3\), divide both sides by 11000:
[tex]\[ b^3 = \frac{704}{11000}. \][/tex]
Simplifying the fraction:
[tex]\[ b^3 = \frac{704}{11000} = \frac{704 \div 16}{11000 \div 16} = \frac{44}{687.5}. \][/tex]
Further simplifying:
[tex]\[ b^3 = \frac{44 \div 2}{687.5 \div 2} = \frac{22}{343.75}. \][/tex]
To simplify more accurately in common fraction or decimal:
[tex]\[ b^3 = 0.064. \][/tex]
4. Find the cube root of \(0.064\):
[tex]\[ b = \sqrt[3]{0.064}. \][/tex]
Calculating the cube root:
[tex]\[ b = 0.4. \][/tex]
Now we have the values for \(a\) and \(b\):
[tex]\[ a = 11000, \][/tex]
[tex]\[ b = 0.4. \][/tex]
Thus, the values of \(a\) and \(b\) are:
[tex]\[ \begin{array}{l} a = 11000 \\ b = 0.4 \end{array} \][/tex]
1. Using the point (0, 11000):
When \(x = 0\), \(f(x) = a b^0 = a\). So, from the point \((0, 11000)\),
[tex]\[ f(0) = a = 11000. \][/tex]
Therefore,
[tex]\[ a = 11000. \][/tex]
2. Using the point (3, 704):
When \(x = 3\), \(f(x) = ab^3\). So, from the point \((3, 704)\),
[tex]\[ f(3) = 11000b^3 = 704. \][/tex]
3. Solve for \(b\):
We set up the equation from the above point:
[tex]\[ 11000b^3 = 704. \][/tex]
To isolate \(b^3\), divide both sides by 11000:
[tex]\[ b^3 = \frac{704}{11000}. \][/tex]
Simplifying the fraction:
[tex]\[ b^3 = \frac{704}{11000} = \frac{704 \div 16}{11000 \div 16} = \frac{44}{687.5}. \][/tex]
Further simplifying:
[tex]\[ b^3 = \frac{44 \div 2}{687.5 \div 2} = \frac{22}{343.75}. \][/tex]
To simplify more accurately in common fraction or decimal:
[tex]\[ b^3 = 0.064. \][/tex]
4. Find the cube root of \(0.064\):
[tex]\[ b = \sqrt[3]{0.064}. \][/tex]
Calculating the cube root:
[tex]\[ b = 0.4. \][/tex]
Now we have the values for \(a\) and \(b\):
[tex]\[ a = 11000, \][/tex]
[tex]\[ b = 0.4. \][/tex]
Thus, the values of \(a\) and \(b\) are:
[tex]\[ \begin{array}{l} a = 11000 \\ b = 0.4 \end{array} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.