At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find a formula for the exponential function passing through the points [tex]\left(-3, \frac{5}{64}\right)[/tex] and [tex](1, 20)[/tex].

[tex]y =[/tex]


Sagot :

To find the exponential function of the form \( y = a \cdot b^x \) that passes through the points \((-3, \frac{5}{64})\) and \((1, 20)\), we need to determine the constants \(a\) and \(b\). Here's a step-by-step process:

1. Set up the system of equations:
We have two points and we need to set up two equations using the exponential function form \(y = a \cdot b^x\).

For the point \((-3, \frac{5}{64}\)):
[tex]\[ \frac{5}{64} = a \cdot b^{-3} \][/tex]

For the point \((1, 20)\):
[tex]\[ 20 = a \cdot b^1 \][/tex]

2. Solve for \(a\) using the second equation:
[tex]\[ 20 = a \cdot b \][/tex]
[tex]\[ a = \frac{20}{b} \][/tex]

3. Substitute \(a\) in the first equation:
[tex]\[ \frac{5}{64} = \left(\frac{20}{b}\right) \cdot b^{-3} \][/tex]
Simplify the equation:
[tex]\[ \frac{5}{64} = 20 \cdot b^{-4} \][/tex]
[tex]\[ \frac{5}{64} = \frac{20}{b^4} \][/tex]

4. Solve for \(b\):
[tex]\[ \frac{5}{64} \cdot b^4 = 20 \][/tex]
[tex]\[ b^4 = 20 \cdot \frac{64}{5} \][/tex]
[tex]\[ b^4 = 256 \][/tex]
[tex]\[ b = \sqrt[4]{256} \][/tex]
[tex]\[ b = 4 \][/tex]

5. Solve for \(a\) using \(b = 4\):
Substitute \(b\) back into the equation \(a = \frac{20}{b}\):
[tex]\[ a = \frac{20}{4} \][/tex]
[tex]\[ a = 5 \][/tex]

6. Write the exponential function:
Now that we have \(a = 5\) and \(b = 4\), the exponential function is:
[tex]\[ y = 5 \cdot 4^x \][/tex]

So, the exponential function that passes through the points \((-3, \frac{5}{64})\) and \((1, 20)\) is:
[tex]\[ y = 5 \cdot 4^x \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.