Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which line is perpendicular to a line with a slope of \( -\frac{1}{3} \), we need to find the slope of the perpendicular line.
The key fact to remember is that the slopes of two perpendicular lines multiply to give \(-1\).
1. Let's denote the slope of the line perpendicular to the given line as \( m_{\text{perpendicular}} \). Since the given line's slope is \( -\frac{1}{3} \), we have:
[tex]\[ m \times m_{\text{perpendicular}} = -1 \][/tex]
2. Substitute the given slope \( m = -\frac{1}{3} \) into the equation:
[tex]\[ -\frac{1}{3} \times m_{\text{perpendicular}} = -1 \][/tex]
3. To isolate \( m_{\text{perpendicular}} \), we can divide both sides of the equation by \( -\frac{1}{3} \):
[tex]\[ m_{\text{perpendicular}} = \frac{-1}{-\frac{1}{3}} \][/tex]
4. Simplifying the division:
[tex]\[ m_{\text{perpendicular}} = \frac{-1}{-\frac{1}{3}} = \frac{-1 \times (-3)}{1} = 3 \][/tex]
Thus, the slope of the line that is perpendicular to a line with a slope of \( -\frac{1}{3} \) is \( 3 \).
Therefore, the line that is perpendicular to a line with a slope of [tex]\( -\frac{1}{3} \)[/tex] is the one having the slope [tex]\( 3 \)[/tex].
The key fact to remember is that the slopes of two perpendicular lines multiply to give \(-1\).
1. Let's denote the slope of the line perpendicular to the given line as \( m_{\text{perpendicular}} \). Since the given line's slope is \( -\frac{1}{3} \), we have:
[tex]\[ m \times m_{\text{perpendicular}} = -1 \][/tex]
2. Substitute the given slope \( m = -\frac{1}{3} \) into the equation:
[tex]\[ -\frac{1}{3} \times m_{\text{perpendicular}} = -1 \][/tex]
3. To isolate \( m_{\text{perpendicular}} \), we can divide both sides of the equation by \( -\frac{1}{3} \):
[tex]\[ m_{\text{perpendicular}} = \frac{-1}{-\frac{1}{3}} \][/tex]
4. Simplifying the division:
[tex]\[ m_{\text{perpendicular}} = \frac{-1}{-\frac{1}{3}} = \frac{-1 \times (-3)}{1} = 3 \][/tex]
Thus, the slope of the line that is perpendicular to a line with a slope of \( -\frac{1}{3} \) is \( 3 \).
Therefore, the line that is perpendicular to a line with a slope of [tex]\( -\frac{1}{3} \)[/tex] is the one having the slope [tex]\( 3 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.