Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

An equilateral triangle has sides measuring [tex]$34 \sqrt{3}$[/tex] units. What is the height of the triangle?

A. 17 units
B. 34 units
C. 51 units
D. 68 units

Sagot :

To determine the height of an equilateral triangle given that each side measures \( 34\sqrt{3} \) units, we can follow these steps:

1. Identify the formula for the height of an equilateral triangle:

The height \( h \) of an equilateral triangle with side length \( a \) is given by the formula:
[tex]\[ h = \frac{\sqrt{3}}{2} \times a \][/tex]

2. Substitute the given side length into the formula:

Here, we are given that \( a = 34\sqrt{3} \) units.

So, substituting this into the formula, we have:
[tex]\[ h = \frac{\sqrt{3}}{2} \times (34\sqrt{3}) \][/tex]

3. Simplify the expression:

Let's simplify the expression step-by-step:
[tex]\[ h = \frac{\sqrt{3}}{2} \times (34\sqrt{3}) \][/tex]
[tex]\[ h = \left(\frac{\sqrt{3}}{2}\right) \times 34 \times \sqrt{3} \][/tex]
[tex]\[ h = 34 \times \left(\frac{\sqrt{3} \times \sqrt{3}}{2}\right) \][/tex]
[tex]\[ h = 34 \times \left(\frac{3}{2}\right) \][/tex]
[tex]\[ h = 34 \times 1.5 \][/tex]
[tex]\[ h = 51 \][/tex]

Thus, the height of the equilateral triangle is \( 51 \) units.

So, out of the given multiple-choice options, the correct answer is:
[tex]\[ \boxed{51 \text{ units}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.