Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve this step by step.
### Part (a)
To model the population of foxes [tex]$t$[/tex] years after the year 2000, we use an exponential growth function. The general form of an exponential growth function is:
[tex]\[ P(t) = P_0 \cdot e^{rt} \][/tex]
where:
- \( P(t) \) is the population at time \( t \),
- \( P_0 \) is the initial population,
- \( r \) is the continuous growth rate,
- \( t \) is the time in years after the initial time.
We know the following:
- The initial population \( P_0 \) in the year 2000 is 14900.
- The continuous growth rate \( r \) is 5 percent per year, which we write as \( r = 0.05 \).
Putting these values into the function, we get:
[tex]\[ P(t) = 14900 \cdot e^{0.05t} \][/tex]
So, the function that models the population \( t \) years after 2000 is:
[tex]\[ P(t) = 14900 \cdot e^{0.05t} \][/tex]
### Part (b)
Now, we use this function to estimate the fox population in the year 2008. The year 2008 is 8 years after the year 2000, so \( t = 8 \).
We substitute \( t = 8 \) into the function \( P(t) \):
[tex]\[ P(8) = 14900 \cdot e^{0.05 \cdot 8} \][/tex]
Calculating this, we get:
[tex]\[ P(8) = 14900 \cdot e^{0.4} \][/tex]
The value of \( e^{0.4} \) is approximately 1.49182. So:
[tex]\[ P(8) = 14900 \cdot 1.49182 \][/tex]
[tex]\[ P(8) \approx 22228.08 \][/tex]
Since we need the population as an integer:
The estimated fox population in the year 2008 is [tex]\( \boxed{22228} \)[/tex].
### Part (a)
To model the population of foxes [tex]$t$[/tex] years after the year 2000, we use an exponential growth function. The general form of an exponential growth function is:
[tex]\[ P(t) = P_0 \cdot e^{rt} \][/tex]
where:
- \( P(t) \) is the population at time \( t \),
- \( P_0 \) is the initial population,
- \( r \) is the continuous growth rate,
- \( t \) is the time in years after the initial time.
We know the following:
- The initial population \( P_0 \) in the year 2000 is 14900.
- The continuous growth rate \( r \) is 5 percent per year, which we write as \( r = 0.05 \).
Putting these values into the function, we get:
[tex]\[ P(t) = 14900 \cdot e^{0.05t} \][/tex]
So, the function that models the population \( t \) years after 2000 is:
[tex]\[ P(t) = 14900 \cdot e^{0.05t} \][/tex]
### Part (b)
Now, we use this function to estimate the fox population in the year 2008. The year 2008 is 8 years after the year 2000, so \( t = 8 \).
We substitute \( t = 8 \) into the function \( P(t) \):
[tex]\[ P(8) = 14900 \cdot e^{0.05 \cdot 8} \][/tex]
Calculating this, we get:
[tex]\[ P(8) = 14900 \cdot e^{0.4} \][/tex]
The value of \( e^{0.4} \) is approximately 1.49182. So:
[tex]\[ P(8) = 14900 \cdot 1.49182 \][/tex]
[tex]\[ P(8) \approx 22228.08 \][/tex]
Since we need the population as an integer:
The estimated fox population in the year 2008 is [tex]\( \boxed{22228} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.