Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which of the given points lies on the graph of the equation \( 8x + 2y = 24 \), we will test each point by substituting \( x \) and \( y \) into the equation and checking if the equality holds.
Let's examine each point:
1. Point \((-1, 8)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(-1) + 2(8) \\ &= -8 + 16 \\ &= 8 \end{align*} \][/tex]
Since \( 8 \neq 24 \), the point \((-1, 8)\) does not lie on the graph of the equation.
2. Point \((2, 8)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(2) + 2(8) \\ &= 16 + 16 \\ &= 32 \end{align*} \][/tex]
Since \( 32 \neq 24 \), the point \((2, 8)\) does not lie on the graph of the equation.
3. Point \((6, -12)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(6) + 2(-12) \\ &= 48 - 24 \\ &= 24 \end{align*} \][/tex]
Since \( 24 = 24 \), the point \((6, -12)\) lies on the graph of the equation.
4. Point \((8, 2)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(8) + 2(2) \\ &= 64 + 4 \\ &= 68 \end{align*} \][/tex]
Since \( 68 \neq 24 \), the point \((8, 2)\) does not lie on the graph of the equation.
Therefore, the point [tex]\((6, -12)\)[/tex] is the one that lies on the graph of the equation [tex]\( 8x + 2y = 24 \)[/tex].
Let's examine each point:
1. Point \((-1, 8)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(-1) + 2(8) \\ &= -8 + 16 \\ &= 8 \end{align*} \][/tex]
Since \( 8 \neq 24 \), the point \((-1, 8)\) does not lie on the graph of the equation.
2. Point \((2, 8)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(2) + 2(8) \\ &= 16 + 16 \\ &= 32 \end{align*} \][/tex]
Since \( 32 \neq 24 \), the point \((2, 8)\) does not lie on the graph of the equation.
3. Point \((6, -12)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(6) + 2(-12) \\ &= 48 - 24 \\ &= 24 \end{align*} \][/tex]
Since \( 24 = 24 \), the point \((6, -12)\) lies on the graph of the equation.
4. Point \((8, 2)\)
[tex]\[ \begin{align*} 8x + 2y &= 8(8) + 2(2) \\ &= 64 + 4 \\ &= 68 \end{align*} \][/tex]
Since \( 68 \neq 24 \), the point \((8, 2)\) does not lie on the graph of the equation.
Therefore, the point [tex]\((6, -12)\)[/tex] is the one that lies on the graph of the equation [tex]\( 8x + 2y = 24 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.