Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the given equation \(\frac{2x - 1}{y} = \frac{w + 2}{2z}\) for \(w\), follow these steps:
1. Cross-Multiply to Eliminate the Denominators:
Given:
[tex]\[ \frac{2x - 1}{y} = \frac{w + 2}{2z} \][/tex]
Cross-multiplying both sides, we get:
[tex]\[ (2x - 1) \cdot 2z = (w + 2) \cdot y \][/tex]
This simplifies to:
[tex]\[ 2z(2x - 1) = y(w + 2) \][/tex]
2. Distribute and Expand:
Distribute \(2z\) on the left side:
[tex]\[ 4xz - 2z = y(w + 2) \][/tex]
3. Isolate \(w\) on One Side of the Equation:
Rearrange to isolate \(w\):
[tex]\[ 4xz - 2z = yw + 2y \][/tex]
Subtract \(2y\) from both sides:
[tex]\[ 4xz - 2z - 2y = yw \][/tex]
4. Solve for \(w\):
Divide both sides by \(y\) to solve for \(w\):
[tex]\[ w = \frac{4xz - 2z - 2y}{y} \][/tex]
This matches one of the choices given, specifically:
[tex]\[ w = \frac{4xz - 2z - 2y}{y} \][/tex]
Thus, the correct solution is:
[tex]\[ \boxed{w = \frac{4xz - 2z - 2y}{y}} \][/tex]
1. Cross-Multiply to Eliminate the Denominators:
Given:
[tex]\[ \frac{2x - 1}{y} = \frac{w + 2}{2z} \][/tex]
Cross-multiplying both sides, we get:
[tex]\[ (2x - 1) \cdot 2z = (w + 2) \cdot y \][/tex]
This simplifies to:
[tex]\[ 2z(2x - 1) = y(w + 2) \][/tex]
2. Distribute and Expand:
Distribute \(2z\) on the left side:
[tex]\[ 4xz - 2z = y(w + 2) \][/tex]
3. Isolate \(w\) on One Side of the Equation:
Rearrange to isolate \(w\):
[tex]\[ 4xz - 2z = yw + 2y \][/tex]
Subtract \(2y\) from both sides:
[tex]\[ 4xz - 2z - 2y = yw \][/tex]
4. Solve for \(w\):
Divide both sides by \(y\) to solve for \(w\):
[tex]\[ w = \frac{4xz - 2z - 2y}{y} \][/tex]
This matches one of the choices given, specifically:
[tex]\[ w = \frac{4xz - 2z - 2y}{y} \][/tex]
Thus, the correct solution is:
[tex]\[ \boxed{w = \frac{4xz - 2z - 2y}{y}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.