Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Complete the missing reasons for the proof.

Given: [tex]4(x-2)=6x+18[/tex]

Prove: [tex]x=-13[/tex]

| Statements | Reasons |
|-----------------------------|----------------------------------------------|
| 1. [tex]4(x-2)=6x+18[/tex] | Given |
| 2. [tex]4x-8=6x+18[/tex] | Distributive Property |
| 3. [tex]-2x-8=18[/tex] | Subtraction Property of Equality |
| 4. [tex]-2x=26[/tex] | Addition Property of Equality |
| 5. [tex]x=-13[/tex] | Division Property of Equality |


Sagot :

Let's detail the step-by-step solution and complete the missing reasons for the proof.

Given equation:
[tex]\[ 4(x-2) = 6x + 18 \][/tex]

Statements and Reasons:

1. Statement: \( 4(x-2) = 6x + 18 \)
- Reason: Given

2. Statement: \( 4x - 8 = 6x + 18 \)
- Reason: Distributive property

3. Statement: \( 4x - 6x - 8 = 18 \)
- Reason: Subtraction property of equality (subtracting \( 6x \) from both sides)

4. Statement: \( -2x - 8 = 18 \)
- Reason: Combining like terms

5. Statement: \( -2x = 26 \)
- Reason: Addition property of equality (adding 8 to both sides)

6. Statement: \( x = -13 \)
- Reason: Division property of equality (dividing both sides by -2)

Therefore, the correct completion of the missing reasons for the proof is:
3. Subtraction property of equality
5. Division property of equality
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.