Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which equation best fits the given set of data, we must compare the y-values generated by each equation with the provided y-values and assess which equation yields the smallest errors. This can be done by calculating the predicted y-values for each candidate equation and comparing them to the given y-values using the sum of squared errors (SSE).
Here are the candidate equations:
A. \( y = 11 \sqrt{x - 0.3} + 4.3 \)
B. \( y = 2x + 17 \)
C. \( y = 11 \sqrt{x + 0.3} - 4.3 \)
D. \( y = 2x - 17 \)
Let's calculate the predicted y-values for each equation:
### Equation A: \( y = 11 \sqrt{x - 0.3} + 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 - 0.3} + 4.3 &\approx \text{undefined (negative inside square root)} \\ y(2) &= 11 \sqrt{2 - 0.3} + 4.3 &= 11 \sqrt{1.7} + 4.3 &\approx 18.92 \\ y(4) &= 11 \sqrt{4 - 0.3} + 4.3 &= 11 \sqrt{3.7} + 4.3 &\approx 25.16 \\ y(6) &= 11 \sqrt{6 - 0.3} + 4.3 &= 11 \sqrt{5.7} + 4.3 &\approx 29.57 \\ y(8) &= 11 \sqrt{8 - 0.3} + 4.3 &= 11 \sqrt{7.7} + 4.3 &\approx 33.06 \\ y(10) &= 11 \sqrt{10 - 0.3} + 4.3 &= 11 \sqrt{9.7} + 4.3 &\approx 36.19 \\ y(12) &= 11 \sqrt{12 - 0.3} + 4.3 &= 11 \sqrt{11.7} + 4.3 &\approx 38.84 \\ y(14) &= 11 \sqrt{14 - 0.3} + 4.3 &= 11 \sqrt{13.7} + 4.3 &\approx 41.18 \\ y(16) &= 11 \sqrt{16 - 0.3} + 4.3 &= 11 \sqrt{15.7} + 4.3 &\approx 43.33 \\ y(18) &= 11 \sqrt{18 - 0.3} + 4.3 &= 11 \sqrt{17.7} + 4.3 &\approx 45.30 \\ \end{align*} \][/tex]
Already, we can notice a significant discrepancy: the predicted values do not match closely with the data points.
### Equation B: \( y = 2x + 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) + 17 &= 17 \\ y(2) &= 2(2) + 17 &= 21 \\ y(4) &= 2(4) + 17 &= 25 \\ y(6) &= 2(6) + 17 &= 29 \\ y(8) &= 2(8) + 17 &= 33 \\ y(10) &= 2(10) + 17 &= 37 \\ y(12) &= 2(12) + 17 &= 41 \\ y(14) &= 2(14) + 17 &= 45 \\ y(16) &= 2(16) + 17 &= 49 \\ y(18) &= 2(18) + 17 &= 53 \\ \end{align*} \][/tex]
This equation's predicted values align very closely with the provided y-values, suggesting a strong fit.
### Equation C: \( y = 11 \sqrt{x + 0.3} - 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 + 0.3} - 4.3 &= 11 \sqrt{0.3} - 4.3 &\approx 1.71 \\ y(2) &= 11 \sqrt{2 + 0.3} - 4.3 &= 11 \sqrt{2.3} - 4.3 &\approx 8.41 \\ y(4) &= 11 \sqrt{4 + 0.3} - 4.3 &= 11 \sqrt{4.3} - 4.3 &\approx 18.46 \\ y(6) &= 11 \sqrt{6 + 0.3} - 4.3 &= 11 \sqrt{6.3} - 4.3 &\approx 25.35 \\ y(8) &= 11 \sqrt{8 + 0.3} - 4.3 &= 11 \sqrt{8.3} - 4.3 &\approx 31.12 \\ y(10) &= 11 \sqrt{10 + 0.3} - 4.3 &= 11 \sqrt{10.3} - 4.3 &\approx 35.79 \\ y(12) &= 11 \sqrt{12 + 0.3} - 4.3 &= 11 \sqrt{12.3} - 4.3 &\approx 39.63 \\ y(14) &= 11 \sqrt{14 + 0.3} - 4.3 &= 11 \sqrt{14.3} - 4.3 &\approx 42.85 \\ y(16) &= 11 \sqrt{16 + 0.3} - 4.3 &= 11 \sqrt{16.3} - 4.3 &\approx 45.59 \\ y(18) &= 11 \sqrt{18 + 0.3} - 4.3 &= 11 \sqrt{18.3} - 4.3 &\approx 47.88 \\ \end{align*} \][/tex]
This equation's predicted values are somewhat close but less accurate compared to Equation B.
### Equation D: \( y = 2x - 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) - 17 &= -17 \\ y(2) &= 2(2) - 17 &= -13 \\ y(4) &= 2(4) - 17 &= -9 \\ y(6) &= 2(6) - 17 &= -5 \\ y(8) &= 2(8) - 17 &= -1 \\ y(10) &= 2(10) - 17 &= 3 \\ y(12) &= 2(12) - 17 &= 7 \\ y(14) &= 2(14) - 17 &= 11 \\ y(16) &= 2(16) - 17 &= 15 \\ y(18) &= 2(18) - 17 &= 19 \\ \end{align*} \][/tex]
Clearly, this equation does not fit the data at all.
### Conclusion
Based on the predicted values, Equation B, \( y = 2x + 17 \), is the best fit for the given data set. The predicted values very closely match the provided y-values.
Thus, the correct answer is:
B. [tex]\( y = 2x + 17 \)[/tex]
Here are the candidate equations:
A. \( y = 11 \sqrt{x - 0.3} + 4.3 \)
B. \( y = 2x + 17 \)
C. \( y = 11 \sqrt{x + 0.3} - 4.3 \)
D. \( y = 2x - 17 \)
Let's calculate the predicted y-values for each equation:
### Equation A: \( y = 11 \sqrt{x - 0.3} + 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 - 0.3} + 4.3 &\approx \text{undefined (negative inside square root)} \\ y(2) &= 11 \sqrt{2 - 0.3} + 4.3 &= 11 \sqrt{1.7} + 4.3 &\approx 18.92 \\ y(4) &= 11 \sqrt{4 - 0.3} + 4.3 &= 11 \sqrt{3.7} + 4.3 &\approx 25.16 \\ y(6) &= 11 \sqrt{6 - 0.3} + 4.3 &= 11 \sqrt{5.7} + 4.3 &\approx 29.57 \\ y(8) &= 11 \sqrt{8 - 0.3} + 4.3 &= 11 \sqrt{7.7} + 4.3 &\approx 33.06 \\ y(10) &= 11 \sqrt{10 - 0.3} + 4.3 &= 11 \sqrt{9.7} + 4.3 &\approx 36.19 \\ y(12) &= 11 \sqrt{12 - 0.3} + 4.3 &= 11 \sqrt{11.7} + 4.3 &\approx 38.84 \\ y(14) &= 11 \sqrt{14 - 0.3} + 4.3 &= 11 \sqrt{13.7} + 4.3 &\approx 41.18 \\ y(16) &= 11 \sqrt{16 - 0.3} + 4.3 &= 11 \sqrt{15.7} + 4.3 &\approx 43.33 \\ y(18) &= 11 \sqrt{18 - 0.3} + 4.3 &= 11 \sqrt{17.7} + 4.3 &\approx 45.30 \\ \end{align*} \][/tex]
Already, we can notice a significant discrepancy: the predicted values do not match closely with the data points.
### Equation B: \( y = 2x + 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) + 17 &= 17 \\ y(2) &= 2(2) + 17 &= 21 \\ y(4) &= 2(4) + 17 &= 25 \\ y(6) &= 2(6) + 17 &= 29 \\ y(8) &= 2(8) + 17 &= 33 \\ y(10) &= 2(10) + 17 &= 37 \\ y(12) &= 2(12) + 17 &= 41 \\ y(14) &= 2(14) + 17 &= 45 \\ y(16) &= 2(16) + 17 &= 49 \\ y(18) &= 2(18) + 17 &= 53 \\ \end{align*} \][/tex]
This equation's predicted values align very closely with the provided y-values, suggesting a strong fit.
### Equation C: \( y = 11 \sqrt{x + 0.3} - 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 + 0.3} - 4.3 &= 11 \sqrt{0.3} - 4.3 &\approx 1.71 \\ y(2) &= 11 \sqrt{2 + 0.3} - 4.3 &= 11 \sqrt{2.3} - 4.3 &\approx 8.41 \\ y(4) &= 11 \sqrt{4 + 0.3} - 4.3 &= 11 \sqrt{4.3} - 4.3 &\approx 18.46 \\ y(6) &= 11 \sqrt{6 + 0.3} - 4.3 &= 11 \sqrt{6.3} - 4.3 &\approx 25.35 \\ y(8) &= 11 \sqrt{8 + 0.3} - 4.3 &= 11 \sqrt{8.3} - 4.3 &\approx 31.12 \\ y(10) &= 11 \sqrt{10 + 0.3} - 4.3 &= 11 \sqrt{10.3} - 4.3 &\approx 35.79 \\ y(12) &= 11 \sqrt{12 + 0.3} - 4.3 &= 11 \sqrt{12.3} - 4.3 &\approx 39.63 \\ y(14) &= 11 \sqrt{14 + 0.3} - 4.3 &= 11 \sqrt{14.3} - 4.3 &\approx 42.85 \\ y(16) &= 11 \sqrt{16 + 0.3} - 4.3 &= 11 \sqrt{16.3} - 4.3 &\approx 45.59 \\ y(18) &= 11 \sqrt{18 + 0.3} - 4.3 &= 11 \sqrt{18.3} - 4.3 &\approx 47.88 \\ \end{align*} \][/tex]
This equation's predicted values are somewhat close but less accurate compared to Equation B.
### Equation D: \( y = 2x - 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) - 17 &= -17 \\ y(2) &= 2(2) - 17 &= -13 \\ y(4) &= 2(4) - 17 &= -9 \\ y(6) &= 2(6) - 17 &= -5 \\ y(8) &= 2(8) - 17 &= -1 \\ y(10) &= 2(10) - 17 &= 3 \\ y(12) &= 2(12) - 17 &= 7 \\ y(14) &= 2(14) - 17 &= 11 \\ y(16) &= 2(16) - 17 &= 15 \\ y(18) &= 2(18) - 17 &= 19 \\ \end{align*} \][/tex]
Clearly, this equation does not fit the data at all.
### Conclusion
Based on the predicted values, Equation B, \( y = 2x + 17 \), is the best fit for the given data set. The predicted values very closely match the provided y-values.
Thus, the correct answer is:
B. [tex]\( y = 2x + 17 \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.