Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which equation best fits the given set of data, we must compare the y-values generated by each equation with the provided y-values and assess which equation yields the smallest errors. This can be done by calculating the predicted y-values for each candidate equation and comparing them to the given y-values using the sum of squared errors (SSE).
Here are the candidate equations:
A. \( y = 11 \sqrt{x - 0.3} + 4.3 \)
B. \( y = 2x + 17 \)
C. \( y = 11 \sqrt{x + 0.3} - 4.3 \)
D. \( y = 2x - 17 \)
Let's calculate the predicted y-values for each equation:
### Equation A: \( y = 11 \sqrt{x - 0.3} + 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 - 0.3} + 4.3 &\approx \text{undefined (negative inside square root)} \\ y(2) &= 11 \sqrt{2 - 0.3} + 4.3 &= 11 \sqrt{1.7} + 4.3 &\approx 18.92 \\ y(4) &= 11 \sqrt{4 - 0.3} + 4.3 &= 11 \sqrt{3.7} + 4.3 &\approx 25.16 \\ y(6) &= 11 \sqrt{6 - 0.3} + 4.3 &= 11 \sqrt{5.7} + 4.3 &\approx 29.57 \\ y(8) &= 11 \sqrt{8 - 0.3} + 4.3 &= 11 \sqrt{7.7} + 4.3 &\approx 33.06 \\ y(10) &= 11 \sqrt{10 - 0.3} + 4.3 &= 11 \sqrt{9.7} + 4.3 &\approx 36.19 \\ y(12) &= 11 \sqrt{12 - 0.3} + 4.3 &= 11 \sqrt{11.7} + 4.3 &\approx 38.84 \\ y(14) &= 11 \sqrt{14 - 0.3} + 4.3 &= 11 \sqrt{13.7} + 4.3 &\approx 41.18 \\ y(16) &= 11 \sqrt{16 - 0.3} + 4.3 &= 11 \sqrt{15.7} + 4.3 &\approx 43.33 \\ y(18) &= 11 \sqrt{18 - 0.3} + 4.3 &= 11 \sqrt{17.7} + 4.3 &\approx 45.30 \\ \end{align*} \][/tex]
Already, we can notice a significant discrepancy: the predicted values do not match closely with the data points.
### Equation B: \( y = 2x + 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) + 17 &= 17 \\ y(2) &= 2(2) + 17 &= 21 \\ y(4) &= 2(4) + 17 &= 25 \\ y(6) &= 2(6) + 17 &= 29 \\ y(8) &= 2(8) + 17 &= 33 \\ y(10) &= 2(10) + 17 &= 37 \\ y(12) &= 2(12) + 17 &= 41 \\ y(14) &= 2(14) + 17 &= 45 \\ y(16) &= 2(16) + 17 &= 49 \\ y(18) &= 2(18) + 17 &= 53 \\ \end{align*} \][/tex]
This equation's predicted values align very closely with the provided y-values, suggesting a strong fit.
### Equation C: \( y = 11 \sqrt{x + 0.3} - 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 + 0.3} - 4.3 &= 11 \sqrt{0.3} - 4.3 &\approx 1.71 \\ y(2) &= 11 \sqrt{2 + 0.3} - 4.3 &= 11 \sqrt{2.3} - 4.3 &\approx 8.41 \\ y(4) &= 11 \sqrt{4 + 0.3} - 4.3 &= 11 \sqrt{4.3} - 4.3 &\approx 18.46 \\ y(6) &= 11 \sqrt{6 + 0.3} - 4.3 &= 11 \sqrt{6.3} - 4.3 &\approx 25.35 \\ y(8) &= 11 \sqrt{8 + 0.3} - 4.3 &= 11 \sqrt{8.3} - 4.3 &\approx 31.12 \\ y(10) &= 11 \sqrt{10 + 0.3} - 4.3 &= 11 \sqrt{10.3} - 4.3 &\approx 35.79 \\ y(12) &= 11 \sqrt{12 + 0.3} - 4.3 &= 11 \sqrt{12.3} - 4.3 &\approx 39.63 \\ y(14) &= 11 \sqrt{14 + 0.3} - 4.3 &= 11 \sqrt{14.3} - 4.3 &\approx 42.85 \\ y(16) &= 11 \sqrt{16 + 0.3} - 4.3 &= 11 \sqrt{16.3} - 4.3 &\approx 45.59 \\ y(18) &= 11 \sqrt{18 + 0.3} - 4.3 &= 11 \sqrt{18.3} - 4.3 &\approx 47.88 \\ \end{align*} \][/tex]
This equation's predicted values are somewhat close but less accurate compared to Equation B.
### Equation D: \( y = 2x - 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) - 17 &= -17 \\ y(2) &= 2(2) - 17 &= -13 \\ y(4) &= 2(4) - 17 &= -9 \\ y(6) &= 2(6) - 17 &= -5 \\ y(8) &= 2(8) - 17 &= -1 \\ y(10) &= 2(10) - 17 &= 3 \\ y(12) &= 2(12) - 17 &= 7 \\ y(14) &= 2(14) - 17 &= 11 \\ y(16) &= 2(16) - 17 &= 15 \\ y(18) &= 2(18) - 17 &= 19 \\ \end{align*} \][/tex]
Clearly, this equation does not fit the data at all.
### Conclusion
Based on the predicted values, Equation B, \( y = 2x + 17 \), is the best fit for the given data set. The predicted values very closely match the provided y-values.
Thus, the correct answer is:
B. [tex]\( y = 2x + 17 \)[/tex]
Here are the candidate equations:
A. \( y = 11 \sqrt{x - 0.3} + 4.3 \)
B. \( y = 2x + 17 \)
C. \( y = 11 \sqrt{x + 0.3} - 4.3 \)
D. \( y = 2x - 17 \)
Let's calculate the predicted y-values for each equation:
### Equation A: \( y = 11 \sqrt{x - 0.3} + 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 - 0.3} + 4.3 &\approx \text{undefined (negative inside square root)} \\ y(2) &= 11 \sqrt{2 - 0.3} + 4.3 &= 11 \sqrt{1.7} + 4.3 &\approx 18.92 \\ y(4) &= 11 \sqrt{4 - 0.3} + 4.3 &= 11 \sqrt{3.7} + 4.3 &\approx 25.16 \\ y(6) &= 11 \sqrt{6 - 0.3} + 4.3 &= 11 \sqrt{5.7} + 4.3 &\approx 29.57 \\ y(8) &= 11 \sqrt{8 - 0.3} + 4.3 &= 11 \sqrt{7.7} + 4.3 &\approx 33.06 \\ y(10) &= 11 \sqrt{10 - 0.3} + 4.3 &= 11 \sqrt{9.7} + 4.3 &\approx 36.19 \\ y(12) &= 11 \sqrt{12 - 0.3} + 4.3 &= 11 \sqrt{11.7} + 4.3 &\approx 38.84 \\ y(14) &= 11 \sqrt{14 - 0.3} + 4.3 &= 11 \sqrt{13.7} + 4.3 &\approx 41.18 \\ y(16) &= 11 \sqrt{16 - 0.3} + 4.3 &= 11 \sqrt{15.7} + 4.3 &\approx 43.33 \\ y(18) &= 11 \sqrt{18 - 0.3} + 4.3 &= 11 \sqrt{17.7} + 4.3 &\approx 45.30 \\ \end{align*} \][/tex]
Already, we can notice a significant discrepancy: the predicted values do not match closely with the data points.
### Equation B: \( y = 2x + 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) + 17 &= 17 \\ y(2) &= 2(2) + 17 &= 21 \\ y(4) &= 2(4) + 17 &= 25 \\ y(6) &= 2(6) + 17 &= 29 \\ y(8) &= 2(8) + 17 &= 33 \\ y(10) &= 2(10) + 17 &= 37 \\ y(12) &= 2(12) + 17 &= 41 \\ y(14) &= 2(14) + 17 &= 45 \\ y(16) &= 2(16) + 17 &= 49 \\ y(18) &= 2(18) + 17 &= 53 \\ \end{align*} \][/tex]
This equation's predicted values align very closely with the provided y-values, suggesting a strong fit.
### Equation C: \( y = 11 \sqrt{x + 0.3} - 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 + 0.3} - 4.3 &= 11 \sqrt{0.3} - 4.3 &\approx 1.71 \\ y(2) &= 11 \sqrt{2 + 0.3} - 4.3 &= 11 \sqrt{2.3} - 4.3 &\approx 8.41 \\ y(4) &= 11 \sqrt{4 + 0.3} - 4.3 &= 11 \sqrt{4.3} - 4.3 &\approx 18.46 \\ y(6) &= 11 \sqrt{6 + 0.3} - 4.3 &= 11 \sqrt{6.3} - 4.3 &\approx 25.35 \\ y(8) &= 11 \sqrt{8 + 0.3} - 4.3 &= 11 \sqrt{8.3} - 4.3 &\approx 31.12 \\ y(10) &= 11 \sqrt{10 + 0.3} - 4.3 &= 11 \sqrt{10.3} - 4.3 &\approx 35.79 \\ y(12) &= 11 \sqrt{12 + 0.3} - 4.3 &= 11 \sqrt{12.3} - 4.3 &\approx 39.63 \\ y(14) &= 11 \sqrt{14 + 0.3} - 4.3 &= 11 \sqrt{14.3} - 4.3 &\approx 42.85 \\ y(16) &= 11 \sqrt{16 + 0.3} - 4.3 &= 11 \sqrt{16.3} - 4.3 &\approx 45.59 \\ y(18) &= 11 \sqrt{18 + 0.3} - 4.3 &= 11 \sqrt{18.3} - 4.3 &\approx 47.88 \\ \end{align*} \][/tex]
This equation's predicted values are somewhat close but less accurate compared to Equation B.
### Equation D: \( y = 2x - 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) - 17 &= -17 \\ y(2) &= 2(2) - 17 &= -13 \\ y(4) &= 2(4) - 17 &= -9 \\ y(6) &= 2(6) - 17 &= -5 \\ y(8) &= 2(8) - 17 &= -1 \\ y(10) &= 2(10) - 17 &= 3 \\ y(12) &= 2(12) - 17 &= 7 \\ y(14) &= 2(14) - 17 &= 11 \\ y(16) &= 2(16) - 17 &= 15 \\ y(18) &= 2(18) - 17 &= 19 \\ \end{align*} \][/tex]
Clearly, this equation does not fit the data at all.
### Conclusion
Based on the predicted values, Equation B, \( y = 2x + 17 \), is the best fit for the given data set. The predicted values very closely match the provided y-values.
Thus, the correct answer is:
B. [tex]\( y = 2x + 17 \)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.