Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which equation best fits the given set of data, we must compare the y-values generated by each equation with the provided y-values and assess which equation yields the smallest errors. This can be done by calculating the predicted y-values for each candidate equation and comparing them to the given y-values using the sum of squared errors (SSE).
Here are the candidate equations:
A. \( y = 11 \sqrt{x - 0.3} + 4.3 \)
B. \( y = 2x + 17 \)
C. \( y = 11 \sqrt{x + 0.3} - 4.3 \)
D. \( y = 2x - 17 \)
Let's calculate the predicted y-values for each equation:
### Equation A: \( y = 11 \sqrt{x - 0.3} + 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 - 0.3} + 4.3 &\approx \text{undefined (negative inside square root)} \\ y(2) &= 11 \sqrt{2 - 0.3} + 4.3 &= 11 \sqrt{1.7} + 4.3 &\approx 18.92 \\ y(4) &= 11 \sqrt{4 - 0.3} + 4.3 &= 11 \sqrt{3.7} + 4.3 &\approx 25.16 \\ y(6) &= 11 \sqrt{6 - 0.3} + 4.3 &= 11 \sqrt{5.7} + 4.3 &\approx 29.57 \\ y(8) &= 11 \sqrt{8 - 0.3} + 4.3 &= 11 \sqrt{7.7} + 4.3 &\approx 33.06 \\ y(10) &= 11 \sqrt{10 - 0.3} + 4.3 &= 11 \sqrt{9.7} + 4.3 &\approx 36.19 \\ y(12) &= 11 \sqrt{12 - 0.3} + 4.3 &= 11 \sqrt{11.7} + 4.3 &\approx 38.84 \\ y(14) &= 11 \sqrt{14 - 0.3} + 4.3 &= 11 \sqrt{13.7} + 4.3 &\approx 41.18 \\ y(16) &= 11 \sqrt{16 - 0.3} + 4.3 &= 11 \sqrt{15.7} + 4.3 &\approx 43.33 \\ y(18) &= 11 \sqrt{18 - 0.3} + 4.3 &= 11 \sqrt{17.7} + 4.3 &\approx 45.30 \\ \end{align*} \][/tex]
Already, we can notice a significant discrepancy: the predicted values do not match closely with the data points.
### Equation B: \( y = 2x + 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) + 17 &= 17 \\ y(2) &= 2(2) + 17 &= 21 \\ y(4) &= 2(4) + 17 &= 25 \\ y(6) &= 2(6) + 17 &= 29 \\ y(8) &= 2(8) + 17 &= 33 \\ y(10) &= 2(10) + 17 &= 37 \\ y(12) &= 2(12) + 17 &= 41 \\ y(14) &= 2(14) + 17 &= 45 \\ y(16) &= 2(16) + 17 &= 49 \\ y(18) &= 2(18) + 17 &= 53 \\ \end{align*} \][/tex]
This equation's predicted values align very closely with the provided y-values, suggesting a strong fit.
### Equation C: \( y = 11 \sqrt{x + 0.3} - 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 + 0.3} - 4.3 &= 11 \sqrt{0.3} - 4.3 &\approx 1.71 \\ y(2) &= 11 \sqrt{2 + 0.3} - 4.3 &= 11 \sqrt{2.3} - 4.3 &\approx 8.41 \\ y(4) &= 11 \sqrt{4 + 0.3} - 4.3 &= 11 \sqrt{4.3} - 4.3 &\approx 18.46 \\ y(6) &= 11 \sqrt{6 + 0.3} - 4.3 &= 11 \sqrt{6.3} - 4.3 &\approx 25.35 \\ y(8) &= 11 \sqrt{8 + 0.3} - 4.3 &= 11 \sqrt{8.3} - 4.3 &\approx 31.12 \\ y(10) &= 11 \sqrt{10 + 0.3} - 4.3 &= 11 \sqrt{10.3} - 4.3 &\approx 35.79 \\ y(12) &= 11 \sqrt{12 + 0.3} - 4.3 &= 11 \sqrt{12.3} - 4.3 &\approx 39.63 \\ y(14) &= 11 \sqrt{14 + 0.3} - 4.3 &= 11 \sqrt{14.3} - 4.3 &\approx 42.85 \\ y(16) &= 11 \sqrt{16 + 0.3} - 4.3 &= 11 \sqrt{16.3} - 4.3 &\approx 45.59 \\ y(18) &= 11 \sqrt{18 + 0.3} - 4.3 &= 11 \sqrt{18.3} - 4.3 &\approx 47.88 \\ \end{align*} \][/tex]
This equation's predicted values are somewhat close but less accurate compared to Equation B.
### Equation D: \( y = 2x - 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) - 17 &= -17 \\ y(2) &= 2(2) - 17 &= -13 \\ y(4) &= 2(4) - 17 &= -9 \\ y(6) &= 2(6) - 17 &= -5 \\ y(8) &= 2(8) - 17 &= -1 \\ y(10) &= 2(10) - 17 &= 3 \\ y(12) &= 2(12) - 17 &= 7 \\ y(14) &= 2(14) - 17 &= 11 \\ y(16) &= 2(16) - 17 &= 15 \\ y(18) &= 2(18) - 17 &= 19 \\ \end{align*} \][/tex]
Clearly, this equation does not fit the data at all.
### Conclusion
Based on the predicted values, Equation B, \( y = 2x + 17 \), is the best fit for the given data set. The predicted values very closely match the provided y-values.
Thus, the correct answer is:
B. [tex]\( y = 2x + 17 \)[/tex]
Here are the candidate equations:
A. \( y = 11 \sqrt{x - 0.3} + 4.3 \)
B. \( y = 2x + 17 \)
C. \( y = 11 \sqrt{x + 0.3} - 4.3 \)
D. \( y = 2x - 17 \)
Let's calculate the predicted y-values for each equation:
### Equation A: \( y = 11 \sqrt{x - 0.3} + 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 - 0.3} + 4.3 &\approx \text{undefined (negative inside square root)} \\ y(2) &= 11 \sqrt{2 - 0.3} + 4.3 &= 11 \sqrt{1.7} + 4.3 &\approx 18.92 \\ y(4) &= 11 \sqrt{4 - 0.3} + 4.3 &= 11 \sqrt{3.7} + 4.3 &\approx 25.16 \\ y(6) &= 11 \sqrt{6 - 0.3} + 4.3 &= 11 \sqrt{5.7} + 4.3 &\approx 29.57 \\ y(8) &= 11 \sqrt{8 - 0.3} + 4.3 &= 11 \sqrt{7.7} + 4.3 &\approx 33.06 \\ y(10) &= 11 \sqrt{10 - 0.3} + 4.3 &= 11 \sqrt{9.7} + 4.3 &\approx 36.19 \\ y(12) &= 11 \sqrt{12 - 0.3} + 4.3 &= 11 \sqrt{11.7} + 4.3 &\approx 38.84 \\ y(14) &= 11 \sqrt{14 - 0.3} + 4.3 &= 11 \sqrt{13.7} + 4.3 &\approx 41.18 \\ y(16) &= 11 \sqrt{16 - 0.3} + 4.3 &= 11 \sqrt{15.7} + 4.3 &\approx 43.33 \\ y(18) &= 11 \sqrt{18 - 0.3} + 4.3 &= 11 \sqrt{17.7} + 4.3 &\approx 45.30 \\ \end{align*} \][/tex]
Already, we can notice a significant discrepancy: the predicted values do not match closely with the data points.
### Equation B: \( y = 2x + 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) + 17 &= 17 \\ y(2) &= 2(2) + 17 &= 21 \\ y(4) &= 2(4) + 17 &= 25 \\ y(6) &= 2(6) + 17 &= 29 \\ y(8) &= 2(8) + 17 &= 33 \\ y(10) &= 2(10) + 17 &= 37 \\ y(12) &= 2(12) + 17 &= 41 \\ y(14) &= 2(14) + 17 &= 45 \\ y(16) &= 2(16) + 17 &= 49 \\ y(18) &= 2(18) + 17 &= 53 \\ \end{align*} \][/tex]
This equation's predicted values align very closely with the provided y-values, suggesting a strong fit.
### Equation C: \( y = 11 \sqrt{x + 0.3} - 4.3 \)
[tex]\[ \begin{align*} y(0) &= 11 \sqrt{0 + 0.3} - 4.3 &= 11 \sqrt{0.3} - 4.3 &\approx 1.71 \\ y(2) &= 11 \sqrt{2 + 0.3} - 4.3 &= 11 \sqrt{2.3} - 4.3 &\approx 8.41 \\ y(4) &= 11 \sqrt{4 + 0.3} - 4.3 &= 11 \sqrt{4.3} - 4.3 &\approx 18.46 \\ y(6) &= 11 \sqrt{6 + 0.3} - 4.3 &= 11 \sqrt{6.3} - 4.3 &\approx 25.35 \\ y(8) &= 11 \sqrt{8 + 0.3} - 4.3 &= 11 \sqrt{8.3} - 4.3 &\approx 31.12 \\ y(10) &= 11 \sqrt{10 + 0.3} - 4.3 &= 11 \sqrt{10.3} - 4.3 &\approx 35.79 \\ y(12) &= 11 \sqrt{12 + 0.3} - 4.3 &= 11 \sqrt{12.3} - 4.3 &\approx 39.63 \\ y(14) &= 11 \sqrt{14 + 0.3} - 4.3 &= 11 \sqrt{14.3} - 4.3 &\approx 42.85 \\ y(16) &= 11 \sqrt{16 + 0.3} - 4.3 &= 11 \sqrt{16.3} - 4.3 &\approx 45.59 \\ y(18) &= 11 \sqrt{18 + 0.3} - 4.3 &= 11 \sqrt{18.3} - 4.3 &\approx 47.88 \\ \end{align*} \][/tex]
This equation's predicted values are somewhat close but less accurate compared to Equation B.
### Equation D: \( y = 2x - 17 \)
[tex]\[ \begin{align*} y(0) &= 2(0) - 17 &= -17 \\ y(2) &= 2(2) - 17 &= -13 \\ y(4) &= 2(4) - 17 &= -9 \\ y(6) &= 2(6) - 17 &= -5 \\ y(8) &= 2(8) - 17 &= -1 \\ y(10) &= 2(10) - 17 &= 3 \\ y(12) &= 2(12) - 17 &= 7 \\ y(14) &= 2(14) - 17 &= 11 \\ y(16) &= 2(16) - 17 &= 15 \\ y(18) &= 2(18) - 17 &= 19 \\ \end{align*} \][/tex]
Clearly, this equation does not fit the data at all.
### Conclusion
Based on the predicted values, Equation B, \( y = 2x + 17 \), is the best fit for the given data set. The predicted values very closely match the provided y-values.
Thus, the correct answer is:
B. [tex]\( y = 2x + 17 \)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.