Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve for \( u - v \) in component form, we need to follow these steps:
### Step 1: Find the components of vector \( u \)
1. Given: Initial point of \( u \) is \( (6, 8) \) and terminal point is \( (3, -2) \).
2. Calculate the components of vector \( u \):
[tex]\[ u_x = 3 - 6 = -3 \][/tex]
[tex]\[ u_y = -2 - 8 = -10 \][/tex]
So, vector \( u \) in component form is:
[tex]\[ u = \langle -3, -10 \rangle \][/tex]
### Step 2: Find the components of vector \( v \)
1. Given: Initial point of \( v \) is \( (-4, -3) \) and terminal point is \( (1, -7) \).
2. Calculate the components of vector \( v \):
[tex]\[ v_x = 1 - (-4) = 1 + 4 = 5 \][/tex]
[tex]\[ v_y = -7 - (-3) = -7 + 3 = -4 \][/tex]
So, vector \( v \) in component form is:
[tex]\[ v = \langle 5, -4 \rangle \][/tex]
### Step 3: Calculate \( u - v \) in component form
1. Components of \( u \) are \( \langle -3, -10 \rangle \) and components of \( v \) are \( \langle 5, -4 \rangle \).
2. Subtract the components of \( v \) from the components of \( u \):
[tex]\[ (u - v)_x = u_x - v_x = -3 - 5 = -8 \][/tex]
[tex]\[ (u - v)_y = u_y - v_y = -10 - (-4) = -10 + 4 = -6 \][/tex]
So, vector \( u - v \) in component form is:
[tex]\[ u - v = \langle -8, -6 \rangle \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\langle -8, -6 \rangle} \][/tex]
### Step 1: Find the components of vector \( u \)
1. Given: Initial point of \( u \) is \( (6, 8) \) and terminal point is \( (3, -2) \).
2. Calculate the components of vector \( u \):
[tex]\[ u_x = 3 - 6 = -3 \][/tex]
[tex]\[ u_y = -2 - 8 = -10 \][/tex]
So, vector \( u \) in component form is:
[tex]\[ u = \langle -3, -10 \rangle \][/tex]
### Step 2: Find the components of vector \( v \)
1. Given: Initial point of \( v \) is \( (-4, -3) \) and terminal point is \( (1, -7) \).
2. Calculate the components of vector \( v \):
[tex]\[ v_x = 1 - (-4) = 1 + 4 = 5 \][/tex]
[tex]\[ v_y = -7 - (-3) = -7 + 3 = -4 \][/tex]
So, vector \( v \) in component form is:
[tex]\[ v = \langle 5, -4 \rangle \][/tex]
### Step 3: Calculate \( u - v \) in component form
1. Components of \( u \) are \( \langle -3, -10 \rangle \) and components of \( v \) are \( \langle 5, -4 \rangle \).
2. Subtract the components of \( v \) from the components of \( u \):
[tex]\[ (u - v)_x = u_x - v_x = -3 - 5 = -8 \][/tex]
[tex]\[ (u - v)_y = u_y - v_y = -10 - (-4) = -10 + 4 = -6 \][/tex]
So, vector \( u - v \) in component form is:
[tex]\[ u - v = \langle -8, -6 \rangle \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\langle -8, -6 \rangle} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.