Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's use Kepler's Third Law to find the ratio \( \frac{p^2}{a^3} \) for Mars.
### Step-by-Step Solution:
1. Kepler's Third Law: Kepler's Third Law of planetary motion states that the square of the orbital period \( p \) (in years) of a planet is directly proportional to the cube of the semi-major axis \( a \) (in astronomical units, AU) of its orbit. Mathematically, it is expressed as:
[tex]\[ \frac{p^2}{a^3} = \text{constant} \][/tex]
2. Constant Ratio: For all planets orbiting the Sun, this ratio is constant. For the Earth, we use the values \( p = 1 \) year and \( a = 1 \) AU. Therefore, the constant can be calculated as:
[tex]\[ \frac{p^2}{a^3} = \frac{1^2}{1^3} = 1 \][/tex]
3. Applying to Mars: For Mars, let’s denote its semi-major axis by \( a \) (which is 1.5 AU). Regardless of the value of \( a \), according to Kepler's Third Law, the ratio \( \frac{p^2}{a^3} \) remains the same constant for all planets in the solar system.
4. Conclusion: Therefore, the ratio \( \frac{p^2}{a^3} \) for Mars is:
[tex]\[ 1 \][/tex]
Hence, the ratio [tex]\( \frac{p^2}{a^3} \)[/tex] for Mars is [tex]\( \boxed{1} \)[/tex].
### Step-by-Step Solution:
1. Kepler's Third Law: Kepler's Third Law of planetary motion states that the square of the orbital period \( p \) (in years) of a planet is directly proportional to the cube of the semi-major axis \( a \) (in astronomical units, AU) of its orbit. Mathematically, it is expressed as:
[tex]\[ \frac{p^2}{a^3} = \text{constant} \][/tex]
2. Constant Ratio: For all planets orbiting the Sun, this ratio is constant. For the Earth, we use the values \( p = 1 \) year and \( a = 1 \) AU. Therefore, the constant can be calculated as:
[tex]\[ \frac{p^2}{a^3} = \frac{1^2}{1^3} = 1 \][/tex]
3. Applying to Mars: For Mars, let’s denote its semi-major axis by \( a \) (which is 1.5 AU). Regardless of the value of \( a \), according to Kepler's Third Law, the ratio \( \frac{p^2}{a^3} \) remains the same constant for all planets in the solar system.
4. Conclusion: Therefore, the ratio \( \frac{p^2}{a^3} \) for Mars is:
[tex]\[ 1 \][/tex]
Hence, the ratio [tex]\( \frac{p^2}{a^3} \)[/tex] for Mars is [tex]\( \boxed{1} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.