Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's use Kepler's Third Law to find the ratio \( \frac{p^2}{a^3} \) for Mars.
### Step-by-Step Solution:
1. Kepler's Third Law: Kepler's Third Law of planetary motion states that the square of the orbital period \( p \) (in years) of a planet is directly proportional to the cube of the semi-major axis \( a \) (in astronomical units, AU) of its orbit. Mathematically, it is expressed as:
[tex]\[ \frac{p^2}{a^3} = \text{constant} \][/tex]
2. Constant Ratio: For all planets orbiting the Sun, this ratio is constant. For the Earth, we use the values \( p = 1 \) year and \( a = 1 \) AU. Therefore, the constant can be calculated as:
[tex]\[ \frac{p^2}{a^3} = \frac{1^2}{1^3} = 1 \][/tex]
3. Applying to Mars: For Mars, let’s denote its semi-major axis by \( a \) (which is 1.5 AU). Regardless of the value of \( a \), according to Kepler's Third Law, the ratio \( \frac{p^2}{a^3} \) remains the same constant for all planets in the solar system.
4. Conclusion: Therefore, the ratio \( \frac{p^2}{a^3} \) for Mars is:
[tex]\[ 1 \][/tex]
Hence, the ratio [tex]\( \frac{p^2}{a^3} \)[/tex] for Mars is [tex]\( \boxed{1} \)[/tex].
### Step-by-Step Solution:
1. Kepler's Third Law: Kepler's Third Law of planetary motion states that the square of the orbital period \( p \) (in years) of a planet is directly proportional to the cube of the semi-major axis \( a \) (in astronomical units, AU) of its orbit. Mathematically, it is expressed as:
[tex]\[ \frac{p^2}{a^3} = \text{constant} \][/tex]
2. Constant Ratio: For all planets orbiting the Sun, this ratio is constant. For the Earth, we use the values \( p = 1 \) year and \( a = 1 \) AU. Therefore, the constant can be calculated as:
[tex]\[ \frac{p^2}{a^3} = \frac{1^2}{1^3} = 1 \][/tex]
3. Applying to Mars: For Mars, let’s denote its semi-major axis by \( a \) (which is 1.5 AU). Regardless of the value of \( a \), according to Kepler's Third Law, the ratio \( \frac{p^2}{a^3} \) remains the same constant for all planets in the solar system.
4. Conclusion: Therefore, the ratio \( \frac{p^2}{a^3} \) for Mars is:
[tex]\[ 1 \][/tex]
Hence, the ratio [tex]\( \frac{p^2}{a^3} \)[/tex] for Mars is [tex]\( \boxed{1} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.