At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the domain in which the period of a pendulum provides a real value, we analyze the given formula for the period of a pendulum:
[tex]\[ T = 2\pi \sqrt{\frac{L}{g}} \][/tex]
Let's examine each case:
1. Case \( g < 0 \):
- If \( g < 0 \), then the expression inside the square root, \( \frac{L}{g} \), becomes negative since \( L \) (the length of the string) is a positive value by definition.
- The square root of a negative number is not a real number. Hence, the period \( T \) will not be a real number.
- Therefore, the period is not real for \( g < 0 \).
2. Case \( g = 0 \):
- If \( g = 0 \), the denominator of the fraction \( \frac{L}{g} \) becomes zero.
- Division by zero is undefined. Consequently, \( T \) is not defined when \( g = 0 \).
- Hence, the period is undefined for \( g = 0 \).
3. Case \( g > 0 \):
- If \( g > 0 \), the expression inside the square root, \( \frac{L}{g} \), remains positive since both \( L \) and \( g \) are positive.
- The square root of a positive number is a real number. Therefore, \( T \) will be a real number.
- Thus, the period is real for \( g > 0 \).
4. Case \( g \geq 0 \):
- If \( g \ge 0 \), we include both cases \( g = 0 \) and \( g > 0 \).
- As analyzed earlier, the period \( T \) is not defined for \( g = 0 \) and real for \( g > 0 \).
- Since \( g = 0 \) makes the period undefined, \( g \ge 0 \) is not a valid domain for \( T \) to be real.
In conclusion:
- The period is not real for \( g < 0 \).
- The period is undefined for \( g = 0 \).
- The period is real for \( g > 0 \).
- The period is undefined at \( g = 0 \) but real for \( g > 0 \).
Thus, the domains that provide a real value period are:
- \( g < 0 \): False
- \( g = 0 \): False
- \( g > 0 \): True
- [tex]\( g \ge 0 \)[/tex]: False
[tex]\[ T = 2\pi \sqrt{\frac{L}{g}} \][/tex]
Let's examine each case:
1. Case \( g < 0 \):
- If \( g < 0 \), then the expression inside the square root, \( \frac{L}{g} \), becomes negative since \( L \) (the length of the string) is a positive value by definition.
- The square root of a negative number is not a real number. Hence, the period \( T \) will not be a real number.
- Therefore, the period is not real for \( g < 0 \).
2. Case \( g = 0 \):
- If \( g = 0 \), the denominator of the fraction \( \frac{L}{g} \) becomes zero.
- Division by zero is undefined. Consequently, \( T \) is not defined when \( g = 0 \).
- Hence, the period is undefined for \( g = 0 \).
3. Case \( g > 0 \):
- If \( g > 0 \), the expression inside the square root, \( \frac{L}{g} \), remains positive since both \( L \) and \( g \) are positive.
- The square root of a positive number is a real number. Therefore, \( T \) will be a real number.
- Thus, the period is real for \( g > 0 \).
4. Case \( g \geq 0 \):
- If \( g \ge 0 \), we include both cases \( g = 0 \) and \( g > 0 \).
- As analyzed earlier, the period \( T \) is not defined for \( g = 0 \) and real for \( g > 0 \).
- Since \( g = 0 \) makes the period undefined, \( g \ge 0 \) is not a valid domain for \( T \) to be real.
In conclusion:
- The period is not real for \( g < 0 \).
- The period is undefined for \( g = 0 \).
- The period is real for \( g > 0 \).
- The period is undefined at \( g = 0 \) but real for \( g > 0 \).
Thus, the domains that provide a real value period are:
- \( g < 0 \): False
- \( g = 0 \): False
- \( g > 0 \): True
- [tex]\( g \ge 0 \)[/tex]: False
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.