Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which statements describe the transformations of

[tex]\[ f(x) = \sqrt{x} \text{ to } y = f(x + 5) - 4 \][/tex]

Sagot :

To understand the transformations from the function \( f(x) = \sqrt{x} \) to \( y = f(x + 5) - 4 \), let's break down the changes step by step.

1. Transformation of \( x \) to \( x + 5 \):
- The original function is \( f(x) = \sqrt{x} \).
- When we replace \( x \) with \( x + 5 \), the function becomes \( f(x + 5) = \sqrt{x + 5} \).
- This replacement means that the graph of the function is shifted horizontally. Specifically, since we are adding 5 inside the function argument, it shifts the graph to the left by 5 units.

2. Transformation of \( \sqrt{x + 5} \) to \( \sqrt{x + 5} - 4 \):
- Now consider the function \( \sqrt{x + 5} \), and then we subtract 4 from it: \( y = \sqrt{x + 5} - 4 \).
- Subtracting 4 from the entire function causes a vertical shift. Specifically, subtracting 4 from the function means we shift the graph downward by 4 units.

So, summarizing the transformations:

- There is a horizontal shift left by 5 units due to the substitution of \( x \) with \( x + 5 \).
- There is a vertical shift down by 4 units due to the subtraction of 4 from the function value.

Thus, the two transformations are:
1. Horizontal shift left by 5 units.
2. Vertical shift down by 4 units.