Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which statement is true regarding the dilation of a triangle by a scale factor of \( n = \frac{1}{3} \), let's analyze the properties of dilation and the given scale factor.
Step-by-Step Solution:
1. Understanding Scale Factor:
- In geometry, a dilation is a transformation that produces an image that is the same shape as the original figure, but is a different size.
- The scale factor (\( n \)) determines whether the dilation is an enlargement or a reduction.
2. Comparison of Scale Factor:
- If \( n > 1 \), the dilation is an enlargement (the figure becomes larger).
- If \( 0 < n < 1 \), the dilation is a reduction (the figure becomes smaller).
3. Given Scale Factor:
- Here, the scale factor is \( n = \frac{1}{3} \).
- Clearly, \( 0 < \frac{1}{3} < 1 \).
4. Conclusion:
- Since \( 0 < n < 1 \), the dilation results in a reduction.
Therefore, the correct statement is:
It is a reduction because [tex]\( 0 < n < 1 \)[/tex].
Step-by-Step Solution:
1. Understanding Scale Factor:
- In geometry, a dilation is a transformation that produces an image that is the same shape as the original figure, but is a different size.
- The scale factor (\( n \)) determines whether the dilation is an enlargement or a reduction.
2. Comparison of Scale Factor:
- If \( n > 1 \), the dilation is an enlargement (the figure becomes larger).
- If \( 0 < n < 1 \), the dilation is a reduction (the figure becomes smaller).
3. Given Scale Factor:
- Here, the scale factor is \( n = \frac{1}{3} \).
- Clearly, \( 0 < \frac{1}{3} < 1 \).
4. Conclusion:
- Since \( 0 < n < 1 \), the dilation results in a reduction.
Therefore, the correct statement is:
It is a reduction because [tex]\( 0 < n < 1 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.