Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve the given equation step by step to find an equivalent equation for \(w\).
We start with the equation for the perimeter \(P\) of a rectangle, given by:
[tex]\[ P = 2(l + w) \][/tex]
Our goal is to solve for \(w\).
1. Isolate the term containing \(w\):
To isolate \(w\), we first need to simplify the equation by getting rid of the 2 that multiplies the expression inside the parentheses:
[tex]\[ \frac{P}{2} = l + w \][/tex]
2. Solve for \(w\):
Now we need to isolate \(w\). To do this, subtract \(l\) from both sides of the equation:
[tex]\[ \frac{P}{2} - l = w \][/tex]
3. Simplify the equation:
To look similar to the given options, let's combine the terms on the right side of the equation:
[tex]\[ w = \frac{P}{2} - l \][/tex]
To present it in the form that may match the provided options, we need to have a common denominator when combining the terms \(\frac{P}{2}\) and \(-l\).
[tex]\[ w = \frac{P}{2} - \frac{2l}{2} \][/tex]
4. Combine the fractions:
Combine the terms into a single fraction:
[tex]\[ w = \frac{P - 2l}{2} \][/tex]
So, the equation equivalent to \( P = 2(l + w) \) is:
[tex]\[ w = \frac{P - 2l}{2} \][/tex]
Looking at the provided options:
1. \( w = P - 2l \)
2. \( w = P - 1 \)
3. \( w = \frac{P - 2l}{2} \)
4. \( w = \frac{P + 2l}{2} \)
The equation \( w = \frac{P - 2l}{2} \) matches the third option.
Thus, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
We start with the equation for the perimeter \(P\) of a rectangle, given by:
[tex]\[ P = 2(l + w) \][/tex]
Our goal is to solve for \(w\).
1. Isolate the term containing \(w\):
To isolate \(w\), we first need to simplify the equation by getting rid of the 2 that multiplies the expression inside the parentheses:
[tex]\[ \frac{P}{2} = l + w \][/tex]
2. Solve for \(w\):
Now we need to isolate \(w\). To do this, subtract \(l\) from both sides of the equation:
[tex]\[ \frac{P}{2} - l = w \][/tex]
3. Simplify the equation:
To look similar to the given options, let's combine the terms on the right side of the equation:
[tex]\[ w = \frac{P}{2} - l \][/tex]
To present it in the form that may match the provided options, we need to have a common denominator when combining the terms \(\frac{P}{2}\) and \(-l\).
[tex]\[ w = \frac{P}{2} - \frac{2l}{2} \][/tex]
4. Combine the fractions:
Combine the terms into a single fraction:
[tex]\[ w = \frac{P - 2l}{2} \][/tex]
So, the equation equivalent to \( P = 2(l + w) \) is:
[tex]\[ w = \frac{P - 2l}{2} \][/tex]
Looking at the provided options:
1. \( w = P - 2l \)
2. \( w = P - 1 \)
3. \( w = \frac{P - 2l}{2} \)
4. \( w = \frac{P + 2l}{2} \)
The equation \( w = \frac{P - 2l}{2} \) matches the third option.
Thus, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.