Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the formula \( S = \frac{n (a_1 + a_n)}{2} \) for \( a_n \), we will follow a detailed, step-by-step mathematical approach:
1. Understand the given formula:
The formula provided is:
[tex]\[ S = \frac{n (a_1 + a_n)}{2} \][/tex]
where \( S \) is the partial sum of an arithmetic sequence, \( n \) is the number of terms, \( a_1 \) is the first term, and \( a_n \) is the nth term.
2. Isolate the term involving \( a_n \):
First, we need to eliminate the fraction. Multiply both sides of the equation by 2:
[tex]\[ 2S = n (a_1 + a_n) \][/tex]
3. Solve for \( a_n \):
Divide both sides of the equation by \( n \) to isolate \( a_1 + a_n \):
[tex]\[ \frac{2S}{n} = a_1 + a_n \][/tex]
4. Remove \( a_1 \) from the equation:
To isolate \( a_n \), subtract \( a_1 \) from both sides of the equation:
[tex]\[ \frac{2S}{n} - a_1 = a_n \][/tex]
Therefore, the formula for \( a_n \) is:
[tex]\[ a_n = \frac{2S}{n} - a_1 \][/tex]
None of the provided options match our derived formula exactly. Thus, the correct formula for solving \( a_n \) from the given sum formula is:
[tex]\[ a_n = \frac{2S}{n} - a_1 \][/tex]
1. Understand the given formula:
The formula provided is:
[tex]\[ S = \frac{n (a_1 + a_n)}{2} \][/tex]
where \( S \) is the partial sum of an arithmetic sequence, \( n \) is the number of terms, \( a_1 \) is the first term, and \( a_n \) is the nth term.
2. Isolate the term involving \( a_n \):
First, we need to eliminate the fraction. Multiply both sides of the equation by 2:
[tex]\[ 2S = n (a_1 + a_n) \][/tex]
3. Solve for \( a_n \):
Divide both sides of the equation by \( n \) to isolate \( a_1 + a_n \):
[tex]\[ \frac{2S}{n} = a_1 + a_n \][/tex]
4. Remove \( a_1 \) from the equation:
To isolate \( a_n \), subtract \( a_1 \) from both sides of the equation:
[tex]\[ \frac{2S}{n} - a_1 = a_n \][/tex]
Therefore, the formula for \( a_n \) is:
[tex]\[ a_n = \frac{2S}{n} - a_1 \][/tex]
None of the provided options match our derived formula exactly. Thus, the correct formula for solving \( a_n \) from the given sum formula is:
[tex]\[ a_n = \frac{2S}{n} - a_1 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.