Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Alright, let's work through solving for \( c \) given the equation \( 10b = 5(\sqrt{c} + 2) \).
1. Starting with the given equation:
[tex]\[ 10b = 5(\sqrt{c} + 2) \][/tex]
2. First, isolate \(\sqrt{c}\):
[tex]\[ 10b = 5\sqrt{c} + 10 \][/tex]
Subtract 10 from both sides:
[tex]\[ 10b - 10 = 5\sqrt{c} \][/tex]
3. Next, solve for \(\sqrt{c}\):
Divide both sides by 5:
[tex]\[ \frac{10b - 10}{5} = \sqrt{c} \][/tex]
4. Square both sides to solve for \( c \):
[tex]\[ \left(\frac{10b - 10}{5}\right)^2 = c \][/tex]
Simplify the expression inside the square:
[tex]\[ \frac{10b - 10}{5} = 2b - 2 \][/tex]
Therefore:
[tex]\[ c = (2b - 2)^2 \][/tex]
5. Find the equivalent equation:
Notice in this simplified and new expression, the correct form that matches one of the given options would be:
[tex]\[ c = \left( \frac{10b - 10}{5} \right)^2 \][/tex]
This further simplifies to:
[tex]\[ c = \frac{(10b - 10)^2}{25} \][/tex]
Therefore, the equivalent equation to find \( c \) is:
[tex]\[ c = \frac{(10b - 10)^2}{25} \][/tex]
This matches the provided option:
[tex]\[ c = \frac{(10 b - 10)^2}{25} \][/tex]
So the correct answer is:
[tex]\[ c = \frac{(10 b - 10)^2}{25} \][/tex]
1. Starting with the given equation:
[tex]\[ 10b = 5(\sqrt{c} + 2) \][/tex]
2. First, isolate \(\sqrt{c}\):
[tex]\[ 10b = 5\sqrt{c} + 10 \][/tex]
Subtract 10 from both sides:
[tex]\[ 10b - 10 = 5\sqrt{c} \][/tex]
3. Next, solve for \(\sqrt{c}\):
Divide both sides by 5:
[tex]\[ \frac{10b - 10}{5} = \sqrt{c} \][/tex]
4. Square both sides to solve for \( c \):
[tex]\[ \left(\frac{10b - 10}{5}\right)^2 = c \][/tex]
Simplify the expression inside the square:
[tex]\[ \frac{10b - 10}{5} = 2b - 2 \][/tex]
Therefore:
[tex]\[ c = (2b - 2)^2 \][/tex]
5. Find the equivalent equation:
Notice in this simplified and new expression, the correct form that matches one of the given options would be:
[tex]\[ c = \left( \frac{10b - 10}{5} \right)^2 \][/tex]
This further simplifies to:
[tex]\[ c = \frac{(10b - 10)^2}{25} \][/tex]
Therefore, the equivalent equation to find \( c \) is:
[tex]\[ c = \frac{(10b - 10)^2}{25} \][/tex]
This matches the provided option:
[tex]\[ c = \frac{(10 b - 10)^2}{25} \][/tex]
So the correct answer is:
[tex]\[ c = \frac{(10 b - 10)^2}{25} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.