Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Maryann is tracking the change in her vertical jump over 6 months. Use the table to write a linear function that models her jump distance.

\begin{tabular}{|l|l|}
\hline
Month & Vertical Jump (inches) \\
\hline
[tex]$0$[/tex] & [tex]$16$[/tex] \\
\hline
[tex]$2$[/tex] & [tex]$17$[/tex] \\
\hline
[tex]$4$[/tex] & [tex]$18$[/tex] \\
\hline
[tex]$6$[/tex] & [tex]$19$[/tex] \\
\hline
\end{tabular}

A. \( f(x) = \frac{1}{2} x + 16 \)

B. \( f(x) = \frac{1}{2} x + 19 \)

C. \( f(x) = 2x + 16 \)

D. [tex]\( f(x) = 2x + 19 \)[/tex]


Sagot :

To determine the linear function that models Maryann's vertical jump over 6 months, we need to find the slope (m) and the y-intercept (b) of the line that fits the provided data points: (0, 16), (2, 17), (4, 18), and (6, 19).

1. Calculate the slope (m):
The slope is calculated using the formula for the slope between two points, \((x_1, y_1)\) and \((x_2, y_2)\):
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's use the first two data points (0, 16) and (2, 17):
[tex]\[ m = \frac{17 - 16}{2 - 0} = \frac{1}{2} \][/tex]

2. Find the y-intercept (b):
The y-intercept is found by using one of the points and the slope in the linear equation \(y = mx + b\). Using the point (0, 16):
[tex]\[ 16 = \frac{1}{2} \cdot 0 + b \Rightarrow b = 16 \][/tex]

3. Write the linear function:
With the slope and y-intercept determined, the linear function is:
[tex]\[ f(x) = \frac{1}{2}x + 16 \][/tex]

Therefore, the correct linear function that models Maryann's vertical jump over the 6 months is:
[tex]\[ f(x) = \frac{1}{2} x + 16 \][/tex]

Thus, the correct answer is:
[tex]\( f(x)=\frac{1}{2} x+16 \)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.