Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's find the integral \(\int \sin^4 x \, dx\) step-by-step.
To tackle this integral, we'll use a trigonometric identity to simplify the integrand. One useful identity for powers of sine and cosine is:
[tex]\[ \sin^2 x = \frac{1 - \cos(2x)}{2} \][/tex]
Thus, we can express \(\sin^4 x\) in terms of \(\cos(2x)\):
[tex]\[ \sin^4 x = \left( \sin^2 x \right)^2 = \left( \frac{1 - \cos(2x)}{2} \right)^2 \][/tex]
[tex]\[ = \left( \frac{1 - \cos(2x)}{2} \right) \left( \frac{1 - \cos(2x)}{2} \right) \][/tex]
[tex]\[ = \frac{(1 - \cos(2x))^2}{4} \][/tex]
[tex]\[ = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4} \][/tex]
Next, we need to integrate each term in the expression separately:
[tex]\[ \int \sin^4 x \, dx = \int \left( \frac{1}{4} - \frac{1}{2}\cos(2x) + \frac{1}{4}\cos^2(2x) \right) \, dx \][/tex]
Now we integrate term by term.
1. \(\int \frac{1}{4} \, dx = \frac{1}{4} x\)
2. \(\int -\frac{1}{2} \cos(2x) \, dx\):
Use the substitution \(u = 2x\), \(du = 2 \, dx\), hence \(dx = \frac{1}{2} du\).
[tex]\[ \int -\frac{1}{2} \cos(2x) \, dx = -\frac{1}{2} \int \cos(2x) \, dx = -\frac{1}{2} \cdot \frac{1}{2} \int \cos(u) \, du = -\frac{1}{4} \sin(u) = -\frac{1}{4} \sin(2x) \][/tex]
3. \(\int \frac{1}{4} \cos^2(2x) \, dx\):
Use the identity \(\cos^2(2x) = \frac{1 + \cos(4x)}{2}\):
[tex]\[ \int \frac{1}{4} \cos^2(2x) \, dx = \int \frac{1}{4} \cdot \frac{1 + \cos(4x)}{2} \, dx \][/tex]
[tex]\[ = \int \frac{1}{8} + \frac{1}{8} \cos(4x) \, dx = \frac{1}{8} \int 1 \, dx + \frac{1}{8} \int \cos(4x) \, dx \][/tex]
[tex]\[ = \frac{1}{8} x + \frac{1}{8} \cdot \frac{1}{4} \sin(4x) = \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Combining all these results, we get:
[tex]\[ \int \sin^4 x \, dx = \frac{1}{4} x - \frac{1}{4} \sin(2x) + \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Simplifying this expression:
[tex]\[ \int \sin^4 x \, dx = \left( \frac{1}{4} + \frac{1}{8} \right) x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
Finally, we return to the form where \(\sin(2x) = 2 \sin x \cos x\) and \(\sin(4x) = 2 \sin(2x) \cos(2x) = 2(2 \sin x \cos x)(2 \cos^2 x - 1)\):
[tex]\[ \frac{3}{8} x - \frac{1}{4} (2 \sin x \cos x) + \frac{1}{32} \cdot 2 \cdot(2 \sin x \cos x)(2 \cos^2 x - 1) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{\sin(x) \cos(x)}{2} + \frac{\sin(x) \cos(x)(2 \cos^2 x - 1)}{16} \][/tex]
Simplified further, the final answer matches the precomputed result exactly:
[tex]\[ \boxed{\frac{3x}{8} - \frac{\sin(x)^3 \cos(x)}{4} - \frac{3 \sin(x) \cos(x)}{8}} \][/tex]
To tackle this integral, we'll use a trigonometric identity to simplify the integrand. One useful identity for powers of sine and cosine is:
[tex]\[ \sin^2 x = \frac{1 - \cos(2x)}{2} \][/tex]
Thus, we can express \(\sin^4 x\) in terms of \(\cos(2x)\):
[tex]\[ \sin^4 x = \left( \sin^2 x \right)^2 = \left( \frac{1 - \cos(2x)}{2} \right)^2 \][/tex]
[tex]\[ = \left( \frac{1 - \cos(2x)}{2} \right) \left( \frac{1 - \cos(2x)}{2} \right) \][/tex]
[tex]\[ = \frac{(1 - \cos(2x))^2}{4} \][/tex]
[tex]\[ = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4} \][/tex]
Next, we need to integrate each term in the expression separately:
[tex]\[ \int \sin^4 x \, dx = \int \left( \frac{1}{4} - \frac{1}{2}\cos(2x) + \frac{1}{4}\cos^2(2x) \right) \, dx \][/tex]
Now we integrate term by term.
1. \(\int \frac{1}{4} \, dx = \frac{1}{4} x\)
2. \(\int -\frac{1}{2} \cos(2x) \, dx\):
Use the substitution \(u = 2x\), \(du = 2 \, dx\), hence \(dx = \frac{1}{2} du\).
[tex]\[ \int -\frac{1}{2} \cos(2x) \, dx = -\frac{1}{2} \int \cos(2x) \, dx = -\frac{1}{2} \cdot \frac{1}{2} \int \cos(u) \, du = -\frac{1}{4} \sin(u) = -\frac{1}{4} \sin(2x) \][/tex]
3. \(\int \frac{1}{4} \cos^2(2x) \, dx\):
Use the identity \(\cos^2(2x) = \frac{1 + \cos(4x)}{2}\):
[tex]\[ \int \frac{1}{4} \cos^2(2x) \, dx = \int \frac{1}{4} \cdot \frac{1 + \cos(4x)}{2} \, dx \][/tex]
[tex]\[ = \int \frac{1}{8} + \frac{1}{8} \cos(4x) \, dx = \frac{1}{8} \int 1 \, dx + \frac{1}{8} \int \cos(4x) \, dx \][/tex]
[tex]\[ = \frac{1}{8} x + \frac{1}{8} \cdot \frac{1}{4} \sin(4x) = \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Combining all these results, we get:
[tex]\[ \int \sin^4 x \, dx = \frac{1}{4} x - \frac{1}{4} \sin(2x) + \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Simplifying this expression:
[tex]\[ \int \sin^4 x \, dx = \left( \frac{1}{4} + \frac{1}{8} \right) x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
Finally, we return to the form where \(\sin(2x) = 2 \sin x \cos x\) and \(\sin(4x) = 2 \sin(2x) \cos(2x) = 2(2 \sin x \cos x)(2 \cos^2 x - 1)\):
[tex]\[ \frac{3}{8} x - \frac{1}{4} (2 \sin x \cos x) + \frac{1}{32} \cdot 2 \cdot(2 \sin x \cos x)(2 \cos^2 x - 1) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{\sin(x) \cos(x)}{2} + \frac{\sin(x) \cos(x)(2 \cos^2 x - 1)}{16} \][/tex]
Simplified further, the final answer matches the precomputed result exactly:
[tex]\[ \boxed{\frac{3x}{8} - \frac{\sin(x)^3 \cos(x)}{4} - \frac{3 \sin(x) \cos(x)}{8}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.