Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's find the integral \(\int \sin^4 x \, dx\) step-by-step.
To tackle this integral, we'll use a trigonometric identity to simplify the integrand. One useful identity for powers of sine and cosine is:
[tex]\[ \sin^2 x = \frac{1 - \cos(2x)}{2} \][/tex]
Thus, we can express \(\sin^4 x\) in terms of \(\cos(2x)\):
[tex]\[ \sin^4 x = \left( \sin^2 x \right)^2 = \left( \frac{1 - \cos(2x)}{2} \right)^2 \][/tex]
[tex]\[ = \left( \frac{1 - \cos(2x)}{2} \right) \left( \frac{1 - \cos(2x)}{2} \right) \][/tex]
[tex]\[ = \frac{(1 - \cos(2x))^2}{4} \][/tex]
[tex]\[ = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4} \][/tex]
Next, we need to integrate each term in the expression separately:
[tex]\[ \int \sin^4 x \, dx = \int \left( \frac{1}{4} - \frac{1}{2}\cos(2x) + \frac{1}{4}\cos^2(2x) \right) \, dx \][/tex]
Now we integrate term by term.
1. \(\int \frac{1}{4} \, dx = \frac{1}{4} x\)
2. \(\int -\frac{1}{2} \cos(2x) \, dx\):
Use the substitution \(u = 2x\), \(du = 2 \, dx\), hence \(dx = \frac{1}{2} du\).
[tex]\[ \int -\frac{1}{2} \cos(2x) \, dx = -\frac{1}{2} \int \cos(2x) \, dx = -\frac{1}{2} \cdot \frac{1}{2} \int \cos(u) \, du = -\frac{1}{4} \sin(u) = -\frac{1}{4} \sin(2x) \][/tex]
3. \(\int \frac{1}{4} \cos^2(2x) \, dx\):
Use the identity \(\cos^2(2x) = \frac{1 + \cos(4x)}{2}\):
[tex]\[ \int \frac{1}{4} \cos^2(2x) \, dx = \int \frac{1}{4} \cdot \frac{1 + \cos(4x)}{2} \, dx \][/tex]
[tex]\[ = \int \frac{1}{8} + \frac{1}{8} \cos(4x) \, dx = \frac{1}{8} \int 1 \, dx + \frac{1}{8} \int \cos(4x) \, dx \][/tex]
[tex]\[ = \frac{1}{8} x + \frac{1}{8} \cdot \frac{1}{4} \sin(4x) = \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Combining all these results, we get:
[tex]\[ \int \sin^4 x \, dx = \frac{1}{4} x - \frac{1}{4} \sin(2x) + \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Simplifying this expression:
[tex]\[ \int \sin^4 x \, dx = \left( \frac{1}{4} + \frac{1}{8} \right) x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
Finally, we return to the form where \(\sin(2x) = 2 \sin x \cos x\) and \(\sin(4x) = 2 \sin(2x) \cos(2x) = 2(2 \sin x \cos x)(2 \cos^2 x - 1)\):
[tex]\[ \frac{3}{8} x - \frac{1}{4} (2 \sin x \cos x) + \frac{1}{32} \cdot 2 \cdot(2 \sin x \cos x)(2 \cos^2 x - 1) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{\sin(x) \cos(x)}{2} + \frac{\sin(x) \cos(x)(2 \cos^2 x - 1)}{16} \][/tex]
Simplified further, the final answer matches the precomputed result exactly:
[tex]\[ \boxed{\frac{3x}{8} - \frac{\sin(x)^3 \cos(x)}{4} - \frac{3 \sin(x) \cos(x)}{8}} \][/tex]
To tackle this integral, we'll use a trigonometric identity to simplify the integrand. One useful identity for powers of sine and cosine is:
[tex]\[ \sin^2 x = \frac{1 - \cos(2x)}{2} \][/tex]
Thus, we can express \(\sin^4 x\) in terms of \(\cos(2x)\):
[tex]\[ \sin^4 x = \left( \sin^2 x \right)^2 = \left( \frac{1 - \cos(2x)}{2} \right)^2 \][/tex]
[tex]\[ = \left( \frac{1 - \cos(2x)}{2} \right) \left( \frac{1 - \cos(2x)}{2} \right) \][/tex]
[tex]\[ = \frac{(1 - \cos(2x))^2}{4} \][/tex]
[tex]\[ = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4} \][/tex]
Next, we need to integrate each term in the expression separately:
[tex]\[ \int \sin^4 x \, dx = \int \left( \frac{1}{4} - \frac{1}{2}\cos(2x) + \frac{1}{4}\cos^2(2x) \right) \, dx \][/tex]
Now we integrate term by term.
1. \(\int \frac{1}{4} \, dx = \frac{1}{4} x\)
2. \(\int -\frac{1}{2} \cos(2x) \, dx\):
Use the substitution \(u = 2x\), \(du = 2 \, dx\), hence \(dx = \frac{1}{2} du\).
[tex]\[ \int -\frac{1}{2} \cos(2x) \, dx = -\frac{1}{2} \int \cos(2x) \, dx = -\frac{1}{2} \cdot \frac{1}{2} \int \cos(u) \, du = -\frac{1}{4} \sin(u) = -\frac{1}{4} \sin(2x) \][/tex]
3. \(\int \frac{1}{4} \cos^2(2x) \, dx\):
Use the identity \(\cos^2(2x) = \frac{1 + \cos(4x)}{2}\):
[tex]\[ \int \frac{1}{4} \cos^2(2x) \, dx = \int \frac{1}{4} \cdot \frac{1 + \cos(4x)}{2} \, dx \][/tex]
[tex]\[ = \int \frac{1}{8} + \frac{1}{8} \cos(4x) \, dx = \frac{1}{8} \int 1 \, dx + \frac{1}{8} \int \cos(4x) \, dx \][/tex]
[tex]\[ = \frac{1}{8} x + \frac{1}{8} \cdot \frac{1}{4} \sin(4x) = \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Combining all these results, we get:
[tex]\[ \int \sin^4 x \, dx = \frac{1}{4} x - \frac{1}{4} \sin(2x) + \frac{1}{8} x + \frac{1}{32} \sin(4x) \][/tex]
Simplifying this expression:
[tex]\[ \int \sin^4 x \, dx = \left( \frac{1}{4} + \frac{1}{8} \right) x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{1}{4} \sin(2x) + \frac{1}{32} \sin(4x) \][/tex]
Finally, we return to the form where \(\sin(2x) = 2 \sin x \cos x\) and \(\sin(4x) = 2 \sin(2x) \cos(2x) = 2(2 \sin x \cos x)(2 \cos^2 x - 1)\):
[tex]\[ \frac{3}{8} x - \frac{1}{4} (2 \sin x \cos x) + \frac{1}{32} \cdot 2 \cdot(2 \sin x \cos x)(2 \cos^2 x - 1) \][/tex]
[tex]\[ = \frac{3}{8} x - \frac{\sin(x) \cos(x)}{2} + \frac{\sin(x) \cos(x)(2 \cos^2 x - 1)}{16} \][/tex]
Simplified further, the final answer matches the precomputed result exactly:
[tex]\[ \boxed{\frac{3x}{8} - \frac{\sin(x)^3 \cos(x)}{4} - \frac{3 \sin(x) \cos(x)}{8}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.