Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Alright class, let's solve the equation \(\log _4 \sqrt{75 x+1}=2\) step by step.
Step 1: Understand the logarithmic equation.
We have the equation \(\log_4 (\sqrt{75x + 1}) = 2\).
Step 2: Convert the logarithmic equation to an exponential equation.
Recall that if \(\log_b (y) = c\), this implies \(y = b^c\). For our equation, this gives:
[tex]\[ \sqrt{75x + 1} = 4^2 \][/tex]
Step 3: Simplify the exponential equation.
Calculate \(4^2\):
[tex]\[ 4^2 = 16 \][/tex]
Thus:
[tex]\[ \sqrt{75x + 1} = 16 \][/tex]
Step 4: Remove the square root by squaring both sides.
To isolate \(75x + 1\), square both sides of the equation:
[tex]\[ (\sqrt{75x + 1})^2 = 16^2 \][/tex]
This simplifies to:
[tex]\[ 75x + 1 = 256 \][/tex]
Step 5: Solve for \(x\).
Isolate \(x\) by subtracting 1 from both sides:
[tex]\[ 75x = 256 - 1 \][/tex]
[tex]\[ 75x = 255 \][/tex]
Then, divide both sides by 75:
[tex]\[ x = \frac{255}{75} \][/tex]
Step 6: Simplify the fraction.
Reduce the fraction \(\frac{255}{75}\):
[tex]\[ x = \frac{255 \div 15}{75 \div 15} \][/tex]
[tex]\[ x = \frac{17}{5} \][/tex]
Thus, the solution to the equation \(\log _4 \sqrt{75 x+1}=2\) is:
[tex]\[ x = \frac{17}{5} \][/tex]
So, the final answer is:
[tex]\[ x = \frac{17}{5} \][/tex]
Step 1: Understand the logarithmic equation.
We have the equation \(\log_4 (\sqrt{75x + 1}) = 2\).
Step 2: Convert the logarithmic equation to an exponential equation.
Recall that if \(\log_b (y) = c\), this implies \(y = b^c\). For our equation, this gives:
[tex]\[ \sqrt{75x + 1} = 4^2 \][/tex]
Step 3: Simplify the exponential equation.
Calculate \(4^2\):
[tex]\[ 4^2 = 16 \][/tex]
Thus:
[tex]\[ \sqrt{75x + 1} = 16 \][/tex]
Step 4: Remove the square root by squaring both sides.
To isolate \(75x + 1\), square both sides of the equation:
[tex]\[ (\sqrt{75x + 1})^2 = 16^2 \][/tex]
This simplifies to:
[tex]\[ 75x + 1 = 256 \][/tex]
Step 5: Solve for \(x\).
Isolate \(x\) by subtracting 1 from both sides:
[tex]\[ 75x = 256 - 1 \][/tex]
[tex]\[ 75x = 255 \][/tex]
Then, divide both sides by 75:
[tex]\[ x = \frac{255}{75} \][/tex]
Step 6: Simplify the fraction.
Reduce the fraction \(\frac{255}{75}\):
[tex]\[ x = \frac{255 \div 15}{75 \div 15} \][/tex]
[tex]\[ x = \frac{17}{5} \][/tex]
Thus, the solution to the equation \(\log _4 \sqrt{75 x+1}=2\) is:
[tex]\[ x = \frac{17}{5} \][/tex]
So, the final answer is:
[tex]\[ x = \frac{17}{5} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.