Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which point maps onto itself after a reflection across the line \( y = -x \), we need to understand how points transform when reflected over this line.
The rule for reflecting a point \((x, y)\) across the line \( y = -x \) is to swap and negate both coordinates, turning \((x, y)\) into \((-y, -x)\).
Let's apply this transformation to each point and check if any point remains unchanged:
1. Point \((-4, -4)\):
- Reflecting \((-4, -4)\) results in:
[tex]\[ (-(-4), -(-4)) = (4, 4) \][/tex]
So, \((-4, -4)\) does not map onto itself.
2. Point \((-4, 0)\):
- Reflecting \((-4, 0)\) results in:
[tex]\[ (-(0), -(-4)) = (0, 4) \][/tex]
So, \((-4, 0)\) does not map onto itself.
3. Point \((0, -4)\):
- Reflecting \((0, -4)\) results in:
[tex]\[ (-(-4), -(0)) = (4, 0) \][/tex]
So, \((0, -4)\) does not map onto itself.
4. Point \((4, -4)\):
- Reflecting \((4, -4)\) results in:
[tex]\[ (-(-4), -(4)) = (4, -4) \][/tex]
Here, \((4, -4)\) remains \((4, -4)\) after reflection.
Thus, the point \((4, -4)\) maps onto itself after a reflection across the line \( y = -x \).
Therefore, the answer is:
[tex]\[ \boxed{(4, -4)} \][/tex]
The rule for reflecting a point \((x, y)\) across the line \( y = -x \) is to swap and negate both coordinates, turning \((x, y)\) into \((-y, -x)\).
Let's apply this transformation to each point and check if any point remains unchanged:
1. Point \((-4, -4)\):
- Reflecting \((-4, -4)\) results in:
[tex]\[ (-(-4), -(-4)) = (4, 4) \][/tex]
So, \((-4, -4)\) does not map onto itself.
2. Point \((-4, 0)\):
- Reflecting \((-4, 0)\) results in:
[tex]\[ (-(0), -(-4)) = (0, 4) \][/tex]
So, \((-4, 0)\) does not map onto itself.
3. Point \((0, -4)\):
- Reflecting \((0, -4)\) results in:
[tex]\[ (-(-4), -(0)) = (4, 0) \][/tex]
So, \((0, -4)\) does not map onto itself.
4. Point \((4, -4)\):
- Reflecting \((4, -4)\) results in:
[tex]\[ (-(-4), -(4)) = (4, -4) \][/tex]
Here, \((4, -4)\) remains \((4, -4)\) after reflection.
Thus, the point \((4, -4)\) maps onto itself after a reflection across the line \( y = -x \).
Therefore, the answer is:
[tex]\[ \boxed{(4, -4)} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.