Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the amount of heat released by the combustion of 2 mol of methane (\(CH_4\)), we will use the given enthalpies of formation (\(\Delta H_f\)) and the balanced chemical equation:
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \][/tex]
### Step-by-Step Solution:
1. Identify the enthalpies of formation for each compound:
- \(\Delta H_f \text{ (CH}_4(g)\text{)} = -74.6 \text{ kJ/mol}\)
- \(\Delta H_f \text{ (CO}_2(g)\text{)} = -393.5 \text{ kJ/mol}\)
- \(\Delta H_f \text{ (H}_2O(g)\text{)} = -241.82 \text{ kJ/mol}\)
2. Determine the coefficients from the balanced chemical equation:
- \(1 \text{ mol of CH}_4\) reacts with \(2 \text{ mols of O}_2\) to produce \(1 \text{ mol of CO}_2\) and \(2 \text{ mols of H}_2O\).
3. Apply the formula for the enthalpy change of the reaction \(\Delta H_{\text{rxn}}\):
[tex]\[ \Delta H_{\text{rxn}} = \sum (\Delta H_{\text{f,products}}) - \sum (\Delta H_{\text{f,reactants}}) \][/tex]
4. Calculate the sum of the enthalpies of the products and reactants:
- Products:
- \(\Delta H_f \text{ (CO}_2(g)\text{)} = -393.5 \text{ kJ/mol}\)
- \(2 \times \Delta H_f \text{ (H}_2O(g)\text{)} = 2 \times (-241.82 \text{ kJ/mol}) = -483.64 \text{ kJ}\)
- Total \(\Delta H_{\text{f,products}}\) = \(-393.5 + (-483.64) = -877.14 \text{ kJ}\)
- Reactant (\(CH_4\)):
- \(\Delta H_f \text{ (CH}_4(g)\text{)} = -74.6 \text{ kJ/mol}\)
- Reactant (\(O_2\)):
- Note: \(\Delta H_f \text{ (O}_2(g)\text{)}\) is zero for elemental forms in their standard states.
5. Calculate \(\Delta H_{\text{rxn}} \text{ per mol}\):
[tex]\[ \Delta H_{\text{rxn per mol}} = -877.14 \text{ kJ} - (-74.6 \text{ kJ}) = -802.54 \text{ kJ/mol} \][/tex]
6. Calculate the total enthalpy change for the combustion of 2 mol of \(CH_4\):
[tex]\[ \Delta H_{\text{total}} = 2 \text{ mols} \times (-802.54 \text{ kJ/mol}) = -1605.08 \text{ kJ} \][/tex]
### Answer
The amount of heat released by the combustion of 2 mol of methane is \(-1605.1 \text{ kJ}\). This corresponds to the third option provided:
[tex]\[ \boxed{-1605.1 \text{ kJ}} \][/tex]
[tex]\[ CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \][/tex]
### Step-by-Step Solution:
1. Identify the enthalpies of formation for each compound:
- \(\Delta H_f \text{ (CH}_4(g)\text{)} = -74.6 \text{ kJ/mol}\)
- \(\Delta H_f \text{ (CO}_2(g)\text{)} = -393.5 \text{ kJ/mol}\)
- \(\Delta H_f \text{ (H}_2O(g)\text{)} = -241.82 \text{ kJ/mol}\)
2. Determine the coefficients from the balanced chemical equation:
- \(1 \text{ mol of CH}_4\) reacts with \(2 \text{ mols of O}_2\) to produce \(1 \text{ mol of CO}_2\) and \(2 \text{ mols of H}_2O\).
3. Apply the formula for the enthalpy change of the reaction \(\Delta H_{\text{rxn}}\):
[tex]\[ \Delta H_{\text{rxn}} = \sum (\Delta H_{\text{f,products}}) - \sum (\Delta H_{\text{f,reactants}}) \][/tex]
4. Calculate the sum of the enthalpies of the products and reactants:
- Products:
- \(\Delta H_f \text{ (CO}_2(g)\text{)} = -393.5 \text{ kJ/mol}\)
- \(2 \times \Delta H_f \text{ (H}_2O(g)\text{)} = 2 \times (-241.82 \text{ kJ/mol}) = -483.64 \text{ kJ}\)
- Total \(\Delta H_{\text{f,products}}\) = \(-393.5 + (-483.64) = -877.14 \text{ kJ}\)
- Reactant (\(CH_4\)):
- \(\Delta H_f \text{ (CH}_4(g)\text{)} = -74.6 \text{ kJ/mol}\)
- Reactant (\(O_2\)):
- Note: \(\Delta H_f \text{ (O}_2(g)\text{)}\) is zero for elemental forms in their standard states.
5. Calculate \(\Delta H_{\text{rxn}} \text{ per mol}\):
[tex]\[ \Delta H_{\text{rxn per mol}} = -877.14 \text{ kJ} - (-74.6 \text{ kJ}) = -802.54 \text{ kJ/mol} \][/tex]
6. Calculate the total enthalpy change for the combustion of 2 mol of \(CH_4\):
[tex]\[ \Delta H_{\text{total}} = 2 \text{ mols} \times (-802.54 \text{ kJ/mol}) = -1605.08 \text{ kJ} \][/tex]
### Answer
The amount of heat released by the combustion of 2 mol of methane is \(-1605.1 \text{ kJ}\). This corresponds to the third option provided:
[tex]\[ \boxed{-1605.1 \text{ kJ}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.