Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Hydrogen [tex]$\left( H_2 \right)$[/tex] reacts with bromine [tex]$\left( Br_2 \right)$[/tex] to produce hydrogen bromide [tex]$( HBr )$[/tex] gas as shown in the equation below.

[tex]\[ H_2( g ) + Br_2( g ) \rightarrow 2 HBr ( g ) \][/tex]

Standard Enthalpies of Formation:

\begin{tabular}{|c|c|}
\hline
Substance & [tex]$\Delta H_f ( kJ / mol )$[/tex] \\
\hline
[tex]$Br_2$[/tex] (l) & 0.0 \\
\hline
[tex]$Br_2( g )$[/tex] & 30.907 \\
\hline
[tex]$HBr ( g )$[/tex] & -36.4 \\
\hline
[tex]$HC \left( g \right)$[/tex] & -92.307 \\
\hline
[tex]$HI ( g )$[/tex] & 26.48 \\
\hline
[tex]$H_2( g )$[/tex] & 0.0 \\
\hline
[tex]$I_2( g )$[/tex] & 62.438 \\
\hline
\end{tabular}

Based on the equation and the information in the table, what is the enthalpy of the reaction?

Sagot :

To determine the enthalpy change for the reaction, we need to use the standard enthalpies of formation provided in the table. The reaction given is:

[tex]\[ \text{H}_2(\text{g}) + \text{Br}_2(\text{g}) \rightarrow 2 \text{HBr}(\text{g}) \][/tex]

The change in enthalpy for the reaction, \(\Delta H_{\text{reaction}}\), can be calculated using the relation:

[tex]\[ \Delta H_{\text{reaction}} = \sum \Delta H_{f\text{(products)}} - \sum \Delta H_{f\text{(reactants)}} \][/tex]

### Step-by-Step Solution

1. List the given standard enthalpies of formation \(\Delta H_f\):
- \(\Delta H_f(\text{H}_2(\text{g})) = 0.0 \, \text{kJ/mol}\)
- \(\Delta H_f(\text{Br}_2(\text{g})) = 30.907 \, \text{kJ/mol}\)
- \(\Delta H_f(\text{HBr}(\text{g})) = -36.4 \, \text{kJ/mol}\)

2. Write the balanced reaction:
[tex]\[ \text{H}_2(\text{g}) + \text{Br}_2(\text{g}) \rightarrow 2 \text{HBr}(\text{g}) \][/tex]

3. Calculate the total enthalpy of the reactants:
- For \(\text{H}_2(\text{g})\): \(\Delta H_f(\text{H}_2(\text{g})) = 0.0 \, \text{kJ/mol}\)
- For \(\text{Br}_2(\text{g}))\): \(\Delta H_f(\text{Br}_2(\text{g})) = 30.907 \, \text{kJ/mol}\)

Total enthalpy of reactants:
[tex]\[ \text{Enthalpy of reactants} = 0.0 + 30.907 = 30.907 \, \text{kJ/mol} \][/tex]

4. Calculate the total enthalpy of the products:
- For \(2 \text{HBr}(\text{g})\), since we have 2 moles:
[tex]\[ 2 \times \Delta H_f(\text{HBr}(\text{g})) = 2 \times (-36.4) = -72.8 \, \text{kJ/mol} \][/tex]

Total enthalpy of products:
[tex]\[ \text{Enthalpy of products} = -72.8 \, \text{kJ/mol} \][/tex]

5. Calculate the enthalpy change of the reaction:
[tex]\[ \Delta H_{\text{reaction}} = \text{Enthalpy of products} - \text{Enthalpy of reactants} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -72.8 - 30.907 = -103.707 \, \text{kJ/mol} \][/tex]

Thus, the enthalpy change for the reaction is [tex]\(-103.707 \, \text{kJ/mol}\)[/tex].