At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's break down the problem step by step to determine the enthalpy of combustion per mole of butane ([tex]$C_4 H_{10}$[/tex]):
### 1. Write the Balanced Chemical Equation:
[tex]\[ 2 C_4 H_{10} (g) + 13 O_2 (g) \rightarrow 8 CO_2 (g) + 10 H_2O (g) \][/tex]
### 2. Identify the Enthalpy of Formation ([tex]$\Delta H_f$[/tex]):
- [tex]$\Delta H_f$[/tex] of [tex]$CO_2 (g) = -393.5$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$H_2O (g) = -241.82$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$C_4 H_{10} (g) = -125.6$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] for [tex]$O_2 (g)$[/tex] is 0 kJ/mol (since it's in its standard state)
### 3. Calculate the Total Enthalpy of Formation of Reactants:
[tex]\[ \text{Reactants} = (2 \times \Delta H_f \text{ of } C_4 H_{10}) + (13 \times \Delta H_f \text{ of } O_2) \][/tex]
[tex]\[ \text{Reactants} = (2 \times -125.6) + (13 \times 0) = -251.2 \text{ kJ} \][/tex]
### 4. Calculate the Total Enthalpy of Formation of Products:
[tex]\[ \text{Products} = (8 \times \Delta H_f \text{ of } CO_2) + (10 \times \Delta H_f \text{ of } H_2O) \][/tex]
[tex]\[ \text{Products} = (8 \times -393.5) + (10 \times -241.82) = -3148 + (-2418.2) = -5566.2 \text{ kJ} \][/tex]
### 5. Calculate the Enthalpy Change of the Reaction ([tex]$\Delta H_{\text{reaction}}$[/tex]):
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_f \text{ of products}) - \sum (\Delta H_f \text{ of reactants}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -5566.2 - (-251.2) = -5566.2 + 251.2 = -5315.0 \text{ kJ} \][/tex]
### 6. Calculate the Enthalpy of Combustion per Mole of Butane:
Since the given balanced equation represents the combustion of 2 moles of butane, we need to divide the total enthalpy change by 2 to find the enthalpy change per mole of butane.
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-5315.0}{2} = -2657.5 \text{ kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of butane is \(-2657.5 \text{ kJ/mol}\).
Therefore, the correct answer is:
[tex]\[ \boxed{-2657.5 \text{ kJ/mol}} \][/tex]
### 1. Write the Balanced Chemical Equation:
[tex]\[ 2 C_4 H_{10} (g) + 13 O_2 (g) \rightarrow 8 CO_2 (g) + 10 H_2O (g) \][/tex]
### 2. Identify the Enthalpy of Formation ([tex]$\Delta H_f$[/tex]):
- [tex]$\Delta H_f$[/tex] of [tex]$CO_2 (g) = -393.5$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$H_2O (g) = -241.82$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$C_4 H_{10} (g) = -125.6$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] for [tex]$O_2 (g)$[/tex] is 0 kJ/mol (since it's in its standard state)
### 3. Calculate the Total Enthalpy of Formation of Reactants:
[tex]\[ \text{Reactants} = (2 \times \Delta H_f \text{ of } C_4 H_{10}) + (13 \times \Delta H_f \text{ of } O_2) \][/tex]
[tex]\[ \text{Reactants} = (2 \times -125.6) + (13 \times 0) = -251.2 \text{ kJ} \][/tex]
### 4. Calculate the Total Enthalpy of Formation of Products:
[tex]\[ \text{Products} = (8 \times \Delta H_f \text{ of } CO_2) + (10 \times \Delta H_f \text{ of } H_2O) \][/tex]
[tex]\[ \text{Products} = (8 \times -393.5) + (10 \times -241.82) = -3148 + (-2418.2) = -5566.2 \text{ kJ} \][/tex]
### 5. Calculate the Enthalpy Change of the Reaction ([tex]$\Delta H_{\text{reaction}}$[/tex]):
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_f \text{ of products}) - \sum (\Delta H_f \text{ of reactants}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -5566.2 - (-251.2) = -5566.2 + 251.2 = -5315.0 \text{ kJ} \][/tex]
### 6. Calculate the Enthalpy of Combustion per Mole of Butane:
Since the given balanced equation represents the combustion of 2 moles of butane, we need to divide the total enthalpy change by 2 to find the enthalpy change per mole of butane.
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-5315.0}{2} = -2657.5 \text{ kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of butane is \(-2657.5 \text{ kJ/mol}\).
Therefore, the correct answer is:
[tex]\[ \boxed{-2657.5 \text{ kJ/mol}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.