Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's break down the problem step by step to determine the enthalpy of combustion per mole of butane ([tex]$C_4 H_{10}$[/tex]):
### 1. Write the Balanced Chemical Equation:
[tex]\[ 2 C_4 H_{10} (g) + 13 O_2 (g) \rightarrow 8 CO_2 (g) + 10 H_2O (g) \][/tex]
### 2. Identify the Enthalpy of Formation ([tex]$\Delta H_f$[/tex]):
- [tex]$\Delta H_f$[/tex] of [tex]$CO_2 (g) = -393.5$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$H_2O (g) = -241.82$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$C_4 H_{10} (g) = -125.6$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] for [tex]$O_2 (g)$[/tex] is 0 kJ/mol (since it's in its standard state)
### 3. Calculate the Total Enthalpy of Formation of Reactants:
[tex]\[ \text{Reactants} = (2 \times \Delta H_f \text{ of } C_4 H_{10}) + (13 \times \Delta H_f \text{ of } O_2) \][/tex]
[tex]\[ \text{Reactants} = (2 \times -125.6) + (13 \times 0) = -251.2 \text{ kJ} \][/tex]
### 4. Calculate the Total Enthalpy of Formation of Products:
[tex]\[ \text{Products} = (8 \times \Delta H_f \text{ of } CO_2) + (10 \times \Delta H_f \text{ of } H_2O) \][/tex]
[tex]\[ \text{Products} = (8 \times -393.5) + (10 \times -241.82) = -3148 + (-2418.2) = -5566.2 \text{ kJ} \][/tex]
### 5. Calculate the Enthalpy Change of the Reaction ([tex]$\Delta H_{\text{reaction}}$[/tex]):
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_f \text{ of products}) - \sum (\Delta H_f \text{ of reactants}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -5566.2 - (-251.2) = -5566.2 + 251.2 = -5315.0 \text{ kJ} \][/tex]
### 6. Calculate the Enthalpy of Combustion per Mole of Butane:
Since the given balanced equation represents the combustion of 2 moles of butane, we need to divide the total enthalpy change by 2 to find the enthalpy change per mole of butane.
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-5315.0}{2} = -2657.5 \text{ kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of butane is \(-2657.5 \text{ kJ/mol}\).
Therefore, the correct answer is:
[tex]\[ \boxed{-2657.5 \text{ kJ/mol}} \][/tex]
### 1. Write the Balanced Chemical Equation:
[tex]\[ 2 C_4 H_{10} (g) + 13 O_2 (g) \rightarrow 8 CO_2 (g) + 10 H_2O (g) \][/tex]
### 2. Identify the Enthalpy of Formation ([tex]$\Delta H_f$[/tex]):
- [tex]$\Delta H_f$[/tex] of [tex]$CO_2 (g) = -393.5$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$H_2O (g) = -241.82$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$C_4 H_{10} (g) = -125.6$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] for [tex]$O_2 (g)$[/tex] is 0 kJ/mol (since it's in its standard state)
### 3. Calculate the Total Enthalpy of Formation of Reactants:
[tex]\[ \text{Reactants} = (2 \times \Delta H_f \text{ of } C_4 H_{10}) + (13 \times \Delta H_f \text{ of } O_2) \][/tex]
[tex]\[ \text{Reactants} = (2 \times -125.6) + (13 \times 0) = -251.2 \text{ kJ} \][/tex]
### 4. Calculate the Total Enthalpy of Formation of Products:
[tex]\[ \text{Products} = (8 \times \Delta H_f \text{ of } CO_2) + (10 \times \Delta H_f \text{ of } H_2O) \][/tex]
[tex]\[ \text{Products} = (8 \times -393.5) + (10 \times -241.82) = -3148 + (-2418.2) = -5566.2 \text{ kJ} \][/tex]
### 5. Calculate the Enthalpy Change of the Reaction ([tex]$\Delta H_{\text{reaction}}$[/tex]):
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_f \text{ of products}) - \sum (\Delta H_f \text{ of reactants}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -5566.2 - (-251.2) = -5566.2 + 251.2 = -5315.0 \text{ kJ} \][/tex]
### 6. Calculate the Enthalpy of Combustion per Mole of Butane:
Since the given balanced equation represents the combustion of 2 moles of butane, we need to divide the total enthalpy change by 2 to find the enthalpy change per mole of butane.
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-5315.0}{2} = -2657.5 \text{ kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of butane is \(-2657.5 \text{ kJ/mol}\).
Therefore, the correct answer is:
[tex]\[ \boxed{-2657.5 \text{ kJ/mol}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.