Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's break down the problem step by step to determine the enthalpy of combustion per mole of butane ([tex]$C_4 H_{10}$[/tex]):
### 1. Write the Balanced Chemical Equation:
[tex]\[ 2 C_4 H_{10} (g) + 13 O_2 (g) \rightarrow 8 CO_2 (g) + 10 H_2O (g) \][/tex]
### 2. Identify the Enthalpy of Formation ([tex]$\Delta H_f$[/tex]):
- [tex]$\Delta H_f$[/tex] of [tex]$CO_2 (g) = -393.5$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$H_2O (g) = -241.82$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$C_4 H_{10} (g) = -125.6$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] for [tex]$O_2 (g)$[/tex] is 0 kJ/mol (since it's in its standard state)
### 3. Calculate the Total Enthalpy of Formation of Reactants:
[tex]\[ \text{Reactants} = (2 \times \Delta H_f \text{ of } C_4 H_{10}) + (13 \times \Delta H_f \text{ of } O_2) \][/tex]
[tex]\[ \text{Reactants} = (2 \times -125.6) + (13 \times 0) = -251.2 \text{ kJ} \][/tex]
### 4. Calculate the Total Enthalpy of Formation of Products:
[tex]\[ \text{Products} = (8 \times \Delta H_f \text{ of } CO_2) + (10 \times \Delta H_f \text{ of } H_2O) \][/tex]
[tex]\[ \text{Products} = (8 \times -393.5) + (10 \times -241.82) = -3148 + (-2418.2) = -5566.2 \text{ kJ} \][/tex]
### 5. Calculate the Enthalpy Change of the Reaction ([tex]$\Delta H_{\text{reaction}}$[/tex]):
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_f \text{ of products}) - \sum (\Delta H_f \text{ of reactants}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -5566.2 - (-251.2) = -5566.2 + 251.2 = -5315.0 \text{ kJ} \][/tex]
### 6. Calculate the Enthalpy of Combustion per Mole of Butane:
Since the given balanced equation represents the combustion of 2 moles of butane, we need to divide the total enthalpy change by 2 to find the enthalpy change per mole of butane.
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-5315.0}{2} = -2657.5 \text{ kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of butane is \(-2657.5 \text{ kJ/mol}\).
Therefore, the correct answer is:
[tex]\[ \boxed{-2657.5 \text{ kJ/mol}} \][/tex]
### 1. Write the Balanced Chemical Equation:
[tex]\[ 2 C_4 H_{10} (g) + 13 O_2 (g) \rightarrow 8 CO_2 (g) + 10 H_2O (g) \][/tex]
### 2. Identify the Enthalpy of Formation ([tex]$\Delta H_f$[/tex]):
- [tex]$\Delta H_f$[/tex] of [tex]$CO_2 (g) = -393.5$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$H_2O (g) = -241.82$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$C_4 H_{10} (g) = -125.6$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] for [tex]$O_2 (g)$[/tex] is 0 kJ/mol (since it's in its standard state)
### 3. Calculate the Total Enthalpy of Formation of Reactants:
[tex]\[ \text{Reactants} = (2 \times \Delta H_f \text{ of } C_4 H_{10}) + (13 \times \Delta H_f \text{ of } O_2) \][/tex]
[tex]\[ \text{Reactants} = (2 \times -125.6) + (13 \times 0) = -251.2 \text{ kJ} \][/tex]
### 4. Calculate the Total Enthalpy of Formation of Products:
[tex]\[ \text{Products} = (8 \times \Delta H_f \text{ of } CO_2) + (10 \times \Delta H_f \text{ of } H_2O) \][/tex]
[tex]\[ \text{Products} = (8 \times -393.5) + (10 \times -241.82) = -3148 + (-2418.2) = -5566.2 \text{ kJ} \][/tex]
### 5. Calculate the Enthalpy Change of the Reaction ([tex]$\Delta H_{\text{reaction}}$[/tex]):
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_f \text{ of products}) - \sum (\Delta H_f \text{ of reactants}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -5566.2 - (-251.2) = -5566.2 + 251.2 = -5315.0 \text{ kJ} \][/tex]
### 6. Calculate the Enthalpy of Combustion per Mole of Butane:
Since the given balanced equation represents the combustion of 2 moles of butane, we need to divide the total enthalpy change by 2 to find the enthalpy change per mole of butane.
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-5315.0}{2} = -2657.5 \text{ kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of butane is \(-2657.5 \text{ kJ/mol}\).
Therefore, the correct answer is:
[tex]\[ \boxed{-2657.5 \text{ kJ/mol}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.