Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the problem step by step to determine the enthalpy of combustion per mole of butane ([tex]$C_4 H_{10}$[/tex]):
### 1. Write the Balanced Chemical Equation:
[tex]\[ 2 C_4 H_{10} (g) + 13 O_2 (g) \rightarrow 8 CO_2 (g) + 10 H_2O (g) \][/tex]
### 2. Identify the Enthalpy of Formation ([tex]$\Delta H_f$[/tex]):
- [tex]$\Delta H_f$[/tex] of [tex]$CO_2 (g) = -393.5$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$H_2O (g) = -241.82$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$C_4 H_{10} (g) = -125.6$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] for [tex]$O_2 (g)$[/tex] is 0 kJ/mol (since it's in its standard state)
### 3. Calculate the Total Enthalpy of Formation of Reactants:
[tex]\[ \text{Reactants} = (2 \times \Delta H_f \text{ of } C_4 H_{10}) + (13 \times \Delta H_f \text{ of } O_2) \][/tex]
[tex]\[ \text{Reactants} = (2 \times -125.6) + (13 \times 0) = -251.2 \text{ kJ} \][/tex]
### 4. Calculate the Total Enthalpy of Formation of Products:
[tex]\[ \text{Products} = (8 \times \Delta H_f \text{ of } CO_2) + (10 \times \Delta H_f \text{ of } H_2O) \][/tex]
[tex]\[ \text{Products} = (8 \times -393.5) + (10 \times -241.82) = -3148 + (-2418.2) = -5566.2 \text{ kJ} \][/tex]
### 5. Calculate the Enthalpy Change of the Reaction ([tex]$\Delta H_{\text{reaction}}$[/tex]):
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_f \text{ of products}) - \sum (\Delta H_f \text{ of reactants}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -5566.2 - (-251.2) = -5566.2 + 251.2 = -5315.0 \text{ kJ} \][/tex]
### 6. Calculate the Enthalpy of Combustion per Mole of Butane:
Since the given balanced equation represents the combustion of 2 moles of butane, we need to divide the total enthalpy change by 2 to find the enthalpy change per mole of butane.
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-5315.0}{2} = -2657.5 \text{ kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of butane is \(-2657.5 \text{ kJ/mol}\).
Therefore, the correct answer is:
[tex]\[ \boxed{-2657.5 \text{ kJ/mol}} \][/tex]
### 1. Write the Balanced Chemical Equation:
[tex]\[ 2 C_4 H_{10} (g) + 13 O_2 (g) \rightarrow 8 CO_2 (g) + 10 H_2O (g) \][/tex]
### 2. Identify the Enthalpy of Formation ([tex]$\Delta H_f$[/tex]):
- [tex]$\Delta H_f$[/tex] of [tex]$CO_2 (g) = -393.5$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$H_2O (g) = -241.82$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] of [tex]$C_4 H_{10} (g) = -125.6$[/tex] kJ/mol
- [tex]$\Delta H_f$[/tex] for [tex]$O_2 (g)$[/tex] is 0 kJ/mol (since it's in its standard state)
### 3. Calculate the Total Enthalpy of Formation of Reactants:
[tex]\[ \text{Reactants} = (2 \times \Delta H_f \text{ of } C_4 H_{10}) + (13 \times \Delta H_f \text{ of } O_2) \][/tex]
[tex]\[ \text{Reactants} = (2 \times -125.6) + (13 \times 0) = -251.2 \text{ kJ} \][/tex]
### 4. Calculate the Total Enthalpy of Formation of Products:
[tex]\[ \text{Products} = (8 \times \Delta H_f \text{ of } CO_2) + (10 \times \Delta H_f \text{ of } H_2O) \][/tex]
[tex]\[ \text{Products} = (8 \times -393.5) + (10 \times -241.82) = -3148 + (-2418.2) = -5566.2 \text{ kJ} \][/tex]
### 5. Calculate the Enthalpy Change of the Reaction ([tex]$\Delta H_{\text{reaction}}$[/tex]):
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_f \text{ of products}) - \sum (\Delta H_f \text{ of reactants}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -5566.2 - (-251.2) = -5566.2 + 251.2 = -5315.0 \text{ kJ} \][/tex]
### 6. Calculate the Enthalpy of Combustion per Mole of Butane:
Since the given balanced equation represents the combustion of 2 moles of butane, we need to divide the total enthalpy change by 2 to find the enthalpy change per mole of butane.
[tex]\[ \Delta H_{\text{combustion per mole}} = \frac{-5315.0}{2} = -2657.5 \text{ kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of butane is \(-2657.5 \text{ kJ/mol}\).
Therefore, the correct answer is:
[tex]\[ \boxed{-2657.5 \text{ kJ/mol}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.