Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the percentage of goldfish that have lengths between 4.6 inches and 9.4 inches, we will use the mean and the standard deviation provided in the table.
1. Identify the given values:
- Mean length of goldfish (\(\mu\)) = 7 inches
- Standard deviation (\(\sigma\)) = 1.2 inches
- Lower bound length = 4.6 inches
- Upper bound length = 9.4 inches
2. Calculate the z-scores for the lower and upper bounds:
The z-score for any length \(X\) is given by the formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
- For the lower bound (4.6 inches):
[tex]\[ Z_{\text{lower}} = \frac{4.6 - 7}{1.2} = \frac{-2.4}{1.2} = -2 \][/tex]
- For the upper bound (9.4 inches):
[tex]\[ Z_{\text{upper}} = \frac{9.4 - 7}{1.2} = \frac{2.4}{1.2} = 2 \][/tex]
3. Interpret the z-scores using the empirical rule (68-95-99.7 rule):
- About 68% of data falls within 1 standard deviation from the mean (\(-1 \leq Z \leq 1\)).
- About 95% of data falls within 2 standard deviations from the mean (\(-2 \leq Z \leq 2\)).
- About 99.7% of data falls within 3 standard deviations from the mean (\(-3 \leq Z \leq 3\)).
Since both calculated z-scores \(Z_{\text{lower}} = -2\) and \(Z_{\text{upper}} = 2\) are within 2 standard deviations from the mean, this falls into the 95% range.
However, they also fall exactly at the boundaries of the 99.7% range (since \(-2\) and \(2\) are within \(-3\) to \(3\) standard deviations range as well).
Hence, the percentage of goldfish with lengths between 4.6 inches and 9.4 inches is [tex]\(99.7 \%.\)[/tex]
1. Identify the given values:
- Mean length of goldfish (\(\mu\)) = 7 inches
- Standard deviation (\(\sigma\)) = 1.2 inches
- Lower bound length = 4.6 inches
- Upper bound length = 9.4 inches
2. Calculate the z-scores for the lower and upper bounds:
The z-score for any length \(X\) is given by the formula:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
- For the lower bound (4.6 inches):
[tex]\[ Z_{\text{lower}} = \frac{4.6 - 7}{1.2} = \frac{-2.4}{1.2} = -2 \][/tex]
- For the upper bound (9.4 inches):
[tex]\[ Z_{\text{upper}} = \frac{9.4 - 7}{1.2} = \frac{2.4}{1.2} = 2 \][/tex]
3. Interpret the z-scores using the empirical rule (68-95-99.7 rule):
- About 68% of data falls within 1 standard deviation from the mean (\(-1 \leq Z \leq 1\)).
- About 95% of data falls within 2 standard deviations from the mean (\(-2 \leq Z \leq 2\)).
- About 99.7% of data falls within 3 standard deviations from the mean (\(-3 \leq Z \leq 3\)).
Since both calculated z-scores \(Z_{\text{lower}} = -2\) and \(Z_{\text{upper}} = 2\) are within 2 standard deviations from the mean, this falls into the 95% range.
However, they also fall exactly at the boundaries of the 99.7% range (since \(-2\) and \(2\) are within \(-3\) to \(3\) standard deviations range as well).
Hence, the percentage of goldfish with lengths between 4.6 inches and 9.4 inches is [tex]\(99.7 \%.\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.