Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

24. Simplify the expression.

[tex]\[ \frac{x^5}{x^9} \][/tex]

A. \( x^4 \)
B. \( \frac{1}{x^{14}} \)
C. \( x^{14} \)
D. [tex]\( \frac{1}{x^4} \)[/tex]


Sagot :

To simplify the expression
[tex]\[ \frac{x^5}{x^9} \][/tex]

we can use the properties of exponents. Specifically, when we divide like bases, we subtract the exponents:
[tex]\[ \frac{x^a}{x^b} = x^{a-b} \][/tex]

Here, \( a = 5 \) and \( b = 9 \), so we subtract the exponent in the denominator from the exponent in the numerator:

[tex]\[ \frac{x^5}{x^9} = x^{5-9} \][/tex]

Simplifying the exponent:
[tex]\[ 5 - 9 = -4 \][/tex]

So the expression becomes:
[tex]\[ x^{-4} \][/tex]

This can also be written as:

[tex]\[ \frac{1}{x^4} \][/tex]

Thus, the simplified form of the expression \( \frac{x^5}{x^9} \) is:
[tex]\[ \frac{1}{x^4} \][/tex]

Among the given choices, the correct answer is:

[tex]\[ \boxed{\frac{1}{x^4}} \][/tex]