Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Simplify the expression. Write the answer using scientific notation.

[tex]\[ \left(5 \times 10^7\right)\left(6 \times 10^4\right) \][/tex]

A. \(3.0 \times 10^{12}\)

B. \(1.1 \times 10^{29}\)

C. \(3.0 \times 10^{29}\)

D. [tex]\(1.1 \times 10^{12}\)[/tex]


Sagot :

To simplify the expression \(\left(5 \times 10^7\right)\left(6 \times 10^4\right)\) and write the answer using scientific notation, follow these steps:

1. Multiply the coefficients:
[tex]\[ 5 \times 6 = 30 \][/tex]

2. Add the exponents (since the bases are the same and we're multiplying):
[tex]\[ 10^7 \times 10^4 = 10^{7+4} = 10^{11} \][/tex]

3. Combine the results from the steps above:
[tex]\[ 30 \times 10^{11} \][/tex]

4. Convert to scientific notation: In scientific notation, a number is written as \(a \times 10^b\) where \(1 \leq a < 10\). Here, 30 can be written as \(3.0 \times 10^1\) to maintain the format:
[tex]\[ 30 \times 10^{11} = 3.0 \times 10^1 \times 10^{11} = 3.0 \times 10^{1+11} = 3.0 \times 10^{12} \][/tex]

Therefore, the expression \(\left(5 \times 10^7\right)\left(6 \times 10^4\right)\) simplifies to \(3.0 \times 10^{12}\).

So, the correct answer is:
[tex]\[ 3.0 \times 10^{12} \][/tex]