Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's simplify each of the given expressions one by one.
1. Simplify \(-(10)^{-2}\):
- First, evaluate \(10^{-2}\). This means taking the reciprocal of \(10^2\).
[tex]\[ 10^{-2} = \frac{1}{10^2} = \frac{1}{100} \][/tex]
- Then, apply the negative sign outside the expression:
[tex]\[ -(10^{-2}) = -\left(\frac{1}{100}\right) = -0.01 \][/tex]
2. Simplify \(-\frac{1}{-2^{10}}\):
- Begin by calculating the exponent part, \(2^{10}\):
[tex]\[ 2^{10} = 1024 \][/tex]
- Then, substitute this back into the expression:
[tex]\[ -\frac{1}{-2^{10}} = -\frac{1}{-1024} \][/tex]
- Simplifying the negative signs (a negative divided by a negative is positive):
[tex]\[ -\frac{1}{-1024} = \frac{1}{1024} = 0.0009765625 \][/tex]
3. Simplify \(\frac{1}{10^2}\):
- Calculate \(10^2\):
[tex]\[ 10^2 = 100 \][/tex]
- Then, take the reciprocal:
[tex]\[ \frac{1}{10^2} = \frac{1}{100} = 0.01 \][/tex]
4. Simplify \(-\frac{1}{10^2}\):
- Calculate \(10^2\):
[tex]\[ 10^2 = 100 \][/tex]
- Then, take the reciprocal and apply the negative sign:
[tex]\[ -\frac{1}{10^2} = -\frac{1}{100} = -0.01 \][/tex]
5. Simplify \(10^2\):
- Simply calculate the value of the exponent:
[tex]\[ 10^2 = 100 \][/tex]
The simplified expressions are:
[tex]\[ -(10)^{-2} = -0.01 \][/tex]
[tex]\[ -\frac{1}{-2^{10}} = 0.0009765625 \][/tex]
[tex]\[ \frac{1}{10^2} = 0.01 \][/tex]
[tex]\[ -\frac{1}{10^2} = -0.01 \][/tex]
[tex]\[ 10^2 = 100 \][/tex]
These are the simplified results for each expression.
1. Simplify \(-(10)^{-2}\):
- First, evaluate \(10^{-2}\). This means taking the reciprocal of \(10^2\).
[tex]\[ 10^{-2} = \frac{1}{10^2} = \frac{1}{100} \][/tex]
- Then, apply the negative sign outside the expression:
[tex]\[ -(10^{-2}) = -\left(\frac{1}{100}\right) = -0.01 \][/tex]
2. Simplify \(-\frac{1}{-2^{10}}\):
- Begin by calculating the exponent part, \(2^{10}\):
[tex]\[ 2^{10} = 1024 \][/tex]
- Then, substitute this back into the expression:
[tex]\[ -\frac{1}{-2^{10}} = -\frac{1}{-1024} \][/tex]
- Simplifying the negative signs (a negative divided by a negative is positive):
[tex]\[ -\frac{1}{-1024} = \frac{1}{1024} = 0.0009765625 \][/tex]
3. Simplify \(\frac{1}{10^2}\):
- Calculate \(10^2\):
[tex]\[ 10^2 = 100 \][/tex]
- Then, take the reciprocal:
[tex]\[ \frac{1}{10^2} = \frac{1}{100} = 0.01 \][/tex]
4. Simplify \(-\frac{1}{10^2}\):
- Calculate \(10^2\):
[tex]\[ 10^2 = 100 \][/tex]
- Then, take the reciprocal and apply the negative sign:
[tex]\[ -\frac{1}{10^2} = -\frac{1}{100} = -0.01 \][/tex]
5. Simplify \(10^2\):
- Simply calculate the value of the exponent:
[tex]\[ 10^2 = 100 \][/tex]
The simplified expressions are:
[tex]\[ -(10)^{-2} = -0.01 \][/tex]
[tex]\[ -\frac{1}{-2^{10}} = 0.0009765625 \][/tex]
[tex]\[ \frac{1}{10^2} = 0.01 \][/tex]
[tex]\[ -\frac{1}{10^2} = -0.01 \][/tex]
[tex]\[ 10^2 = 100 \][/tex]
These are the simplified results for each expression.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.