Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve the equation \( \left(\frac{11}{9}\right)^3 \times \left(\frac{9}{11}\right)^6 = \left(\frac{11}{9}\right)^{2n-1} \).
First, observe the left-hand side of the equation:
[tex]\[ \left(\frac{11}{9}\right)^3 \times \left(\frac{9}{11}\right)^6 \][/tex]
Rewriting \( \left(\frac{9}{11}\right)^6 \) in terms of \( \left(\frac{11}{9}\right) \), we get:
[tex]\[ \left(\frac{9}{11}\right)^6 = \left(\frac{11}{9}\right)^{-6} \][/tex]
Substitute this back into the equation:
[tex]\[ \left(\frac{11}{9}\right)^3 \times \left(\frac{11}{9}\right)^{-6} \][/tex]
Using the property of exponents \( a^m \times a^n = a^{m+n} \):
[tex]\[ \left(\frac{11}{9}\right)^{3 + (-6)} = \left(\frac{11}{9}\right)^{-3} \][/tex]
Now, we have the simplified equation:
[tex]\[ \left(\frac{11}{9}\right)^{-3} = \left(\frac{11}{9}\right)^{2n-1} \][/tex]
Next, set the exponents on both sides of the equation equal to each other:
[tex]\[ -3 = 2n - 1 \][/tex]
Solving for \( n \):
First, add 1 to both sides of the equation:
[tex]\[ -3 + 1 = 2n \][/tex]
[tex]\[ -2 = 2n \][/tex]
Next, divide both sides by 2:
[tex]\[ n = \frac{-2}{2} = -1 \][/tex]
So, the value of \( n \) is \( -1 \).
Now, let's summarize the solution:
1. Simplify the left-hand side of the equation using the properties of exponents: \( \left(\frac{11}{9}\right)^{-3} \).
2. Set the exponents equal: \( -3 = 2n - 1 \).
3. Solve for \( n \): \( n = -1 \).
Thus, the value of [tex]\( n \)[/tex] is [tex]\( -1 \)[/tex], and the exponents on both sides of the equation are [tex]\( -3 \)[/tex].
First, observe the left-hand side of the equation:
[tex]\[ \left(\frac{11}{9}\right)^3 \times \left(\frac{9}{11}\right)^6 \][/tex]
Rewriting \( \left(\frac{9}{11}\right)^6 \) in terms of \( \left(\frac{11}{9}\right) \), we get:
[tex]\[ \left(\frac{9}{11}\right)^6 = \left(\frac{11}{9}\right)^{-6} \][/tex]
Substitute this back into the equation:
[tex]\[ \left(\frac{11}{9}\right)^3 \times \left(\frac{11}{9}\right)^{-6} \][/tex]
Using the property of exponents \( a^m \times a^n = a^{m+n} \):
[tex]\[ \left(\frac{11}{9}\right)^{3 + (-6)} = \left(\frac{11}{9}\right)^{-3} \][/tex]
Now, we have the simplified equation:
[tex]\[ \left(\frac{11}{9}\right)^{-3} = \left(\frac{11}{9}\right)^{2n-1} \][/tex]
Next, set the exponents on both sides of the equation equal to each other:
[tex]\[ -3 = 2n - 1 \][/tex]
Solving for \( n \):
First, add 1 to both sides of the equation:
[tex]\[ -3 + 1 = 2n \][/tex]
[tex]\[ -2 = 2n \][/tex]
Next, divide both sides by 2:
[tex]\[ n = \frac{-2}{2} = -1 \][/tex]
So, the value of \( n \) is \( -1 \).
Now, let's summarize the solution:
1. Simplify the left-hand side of the equation using the properties of exponents: \( \left(\frac{11}{9}\right)^{-3} \).
2. Set the exponents equal: \( -3 = 2n - 1 \).
3. Solve for \( n \): \( n = -1 \).
Thus, the value of [tex]\( n \)[/tex] is [tex]\( -1 \)[/tex], and the exponents on both sides of the equation are [tex]\( -3 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.