Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine if the equation \(3x + 4 = y\) represents a direct proportion, we need to see if it can be written in the form \(y = kx\), where \(k\) is a constant. This form signifies that \(y\) is directly proportional to \(x\).
Let's solve the equation for \(y\):
1. Start with the given equation:
[tex]\[ 3x + 4 = y \][/tex]
2. Our goal is to express \(y\) in terms of \(x\) in a simplified form:
[tex]\[ y = 3x + 4 \][/tex]
Now, we observe the form of the equation \(y = 3x + 4\). For an equation to represent a direct proportion, it must be in the form \(y = kx\), without any additional constant term on the right-hand side.
In our equation, we can see that there is an extra constant term, \(+4\), which means that the equation includes an additive constant that is not related to \(x\). Because of this, \(3x + 4\) does not fit the direct proportion form \(y = kx\).
However, if the constant term (\(+4\)) were not present, the equation would then be of the form \(y = 3x\), indicating a direct proportion where the constant of proportionality \(k\) is 3.
So the equation \(3x + 4 = y\) is not a direct proportion because it does not fit in the required form \(y = kx\).
Thus, the correct identification is:
No.
Let's solve the equation for \(y\):
1. Start with the given equation:
[tex]\[ 3x + 4 = y \][/tex]
2. Our goal is to express \(y\) in terms of \(x\) in a simplified form:
[tex]\[ y = 3x + 4 \][/tex]
Now, we observe the form of the equation \(y = 3x + 4\). For an equation to represent a direct proportion, it must be in the form \(y = kx\), without any additional constant term on the right-hand side.
In our equation, we can see that there is an extra constant term, \(+4\), which means that the equation includes an additive constant that is not related to \(x\). Because of this, \(3x + 4\) does not fit the direct proportion form \(y = kx\).
However, if the constant term (\(+4\)) were not present, the equation would then be of the form \(y = 3x\), indicating a direct proportion where the constant of proportionality \(k\) is 3.
So the equation \(3x + 4 = y\) is not a direct proportion because it does not fit in the required form \(y = kx\).
Thus, the correct identification is:
No.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.