Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the equation that models the total profit, \( y \), based on the number of hotdogs sold, \( x \), we need to find the equation of a line that passes through the given points \((40, 90)\) and \((80, 210)\).
1. Find the Slope (\( m \)) of the Line:
The slope \( m \) is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given points \((x_1, y_1) = (40, 90)\) and \((x_2, y_2) = (80, 210)\), plug these values into the slope formula:
[tex]\[ m = \frac{210 - 90}{80 - 40} = \frac{120}{40} = 3 \][/tex]
So, the slope \( m \) is 3.
2. Use the Point-Slope Form of the Equation of a Line:
The point-slope form of a line's equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the point \((40, 90)\) and the slope \( m = 3 \), we substitute these values into the point-slope form:
[tex]\[ y - 90 = 3(x - 40) \][/tex]
3. Select the Correct Equation:
Comparing the options given:
[tex]\[ \begin{align*} A. & \quad y + 90 = 3(x + 40) \\ B. & \quad y - 90 = 2.6(x - 40) \\ C. & \quad y + 90 = 2.6(x + 40) \\ D. & \quad y - 90 = 3(x - 40) \end{align*} \][/tex]
We see that the correct equation that matches our derived equation \( y - 90 = 3(x - 40) \) is D.
Therefore, the equation that models the total profit, \( y \), based on the number of hotdogs sold, \( x \), is:
[tex]\[ \boxed{y - 90 = 3(x - 40)} \][/tex]
1. Find the Slope (\( m \)) of the Line:
The slope \( m \) is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given points \((x_1, y_1) = (40, 90)\) and \((x_2, y_2) = (80, 210)\), plug these values into the slope formula:
[tex]\[ m = \frac{210 - 90}{80 - 40} = \frac{120}{40} = 3 \][/tex]
So, the slope \( m \) is 3.
2. Use the Point-Slope Form of the Equation of a Line:
The point-slope form of a line's equation is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the point \((40, 90)\) and the slope \( m = 3 \), we substitute these values into the point-slope form:
[tex]\[ y - 90 = 3(x - 40) \][/tex]
3. Select the Correct Equation:
Comparing the options given:
[tex]\[ \begin{align*} A. & \quad y + 90 = 3(x + 40) \\ B. & \quad y - 90 = 2.6(x - 40) \\ C. & \quad y + 90 = 2.6(x + 40) \\ D. & \quad y - 90 = 3(x - 40) \end{align*} \][/tex]
We see that the correct equation that matches our derived equation \( y - 90 = 3(x - 40) \) is D.
Therefore, the equation that models the total profit, \( y \), based on the number of hotdogs sold, \( x \), is:
[tex]\[ \boxed{y - 90 = 3(x - 40)} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.