Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Simplify [tex]$\frac{x^{-6}}{y^4}$[/tex].

Sagot :

To simplify the expression \(\frac{x^{-6}}{y^4}\), we can use the properties of exponents. Let’s go through this step-by-step:

1. Rewrite the expression using the negative exponent rule: When we have a negative exponent, \(a^{-n} = \frac{1}{a^n}\). So, we can rewrite \(x^{-6}\) using this rule:
[tex]\[ x^{-6} = \frac{1}{x^6} \][/tex]
Now our expression becomes:
[tex]\[ \frac{\frac{1}{x^6}}{y^4} \][/tex]

2. Combine the fractions: When you divide by a fraction, it's the same as multiplying by the reciprocal of that fraction. Thus,
[tex]\[ \frac{\frac{1}{x^6}}{y^4} = \frac{1}{x^6} \cdot \frac{1}{y^4} \][/tex]

3. Multiply the fractions: To multiply fractions, you multiply the numerators together and the denominators together:
[tex]\[ \frac{1}{x^6} \cdot \frac{1}{y^4} = \frac{1 \cdot 1}{x^6 \cdot y^4} = \frac{1}{x^6 y^4} \][/tex]

Thus, the simplified form of the expression \(\frac{x^{-6}}{y^4}\) is:
[tex]\[ \frac{1}{x^6 y^4} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.