Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Use properties of logarithms to condense the logarithmic expression.

[tex]\[ 6 \log_b q - \log_b r \][/tex]


Sagot :

To condense the logarithmic expression \( 6 \log_b q - \log_b r \), we can use the properties of logarithms. Let’s go through the steps in detail.

### Step 1: Apply the Power Rule
First, we use the power rule of logarithms, which states that \( a \log_b x = \log_b (x^a) \).

Applying this to the term \( 6 \log_b q \):
[tex]\[ 6 \log_b q = \log_b (q^6) \][/tex]

### Step 2: Combine the Logarithms Using the Quotient Rule
Next, we use the quotient rule of logarithms, which states that \( \log_b x - \log_b y = \log_b \left(\frac{x}{y}\right) \).

Substitute \( \log_b (q^6) \) for \( 6 \log_b q \) and combine it with the term \( -\log_b r \):
[tex]\[ \log_b (q^6) - \log_b r = \log_b \left( \frac{q^6}{r} \right) \][/tex]

### Final Expression
Therefore, the condensed form of the expression \( 6 \log_b q - \log_b r \) is:
[tex]\[ \log_b \left( \frac{q^6}{r} \right) \][/tex]

So, the final condensed expression is:
[tex]\[ \boxed{\log_b \left( \frac{q^6}{r} \right)} \][/tex]