Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

4.5) Use properties of logarithms to condense the logarithmic expression.

[tex]\[ 6 \ln x - \frac{1}{4} \ln y \][/tex]


Sagot :

Certainly! Let's condense the given logarithmic expression using the properties of logarithms step by step.

Given expression:
[tex]\[ 6 \ln(x) - \frac{1}{4} \ln(y) \][/tex]

### Step 1: Apply the power rule of logarithms
The power rule states that \( a \ln(b) \) can be rewritten as \( \ln(b^a) \). We will apply this rule to each term in the expression.

#### For the first term \( 6 \ln(x) \):
[tex]\[ 6 \ln(x) = \ln(x^6) \][/tex]

#### For the second term \( -\frac{1}{4} \ln(y) \):
[tex]\[ -\frac{1}{4} \ln(y) = \ln(y^{-\frac{1}{4}}) \][/tex]

So now the expression looks like:
[tex]\[ \ln(x^6) - \ln(y^{\frac{1}{4}}) \][/tex]

### Step 2: Apply the quotient rule of logarithms
The quotient rule states that \( \ln(a) - \ln(b) \) can be rewritten as \( \ln\left(\frac{a}{b}\right) \). We will apply this rule to the current expression we have.

[tex]\[ \ln(x^6) - \ln(y^{\frac{1}{4}}) = \ln\left(\frac{x^6}{y^{\frac{1}{4}}}\right) \][/tex]

Thus, the condensed logarithmic expression is:
[tex]\[ \ln\left(\frac{x^6}{y^{\frac{1}{4}}}\right) \][/tex]

Therefore, the final condensed form of the given expression \( 6 \ln(x) - \frac{1}{4} \ln(y) \) is:
[tex]\[ \boxed{\ln\left(\frac{x^6}{y^{\frac{1}{4}}}\right)} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.