Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let's go through the problem step by step.
1. Understanding the problem:
- We are given a pole that casts a 12-foot shadow.
- The sun's angle of elevation is \(40^\circ\).
- We need to find the equation that can help us determine \(x\), which is the length of the pole.
2. Identifying the right trigonometric function:
- In this problem, we are dealing with angles and the lengths of sides in a right triangle formed by the pole, its shadow, and the line of sight from the top of the pole to the tip of the shadow.
3. Using the Sine Law:
- The Sine Law states:
[tex]\[ \frac{\sin A}{a} = \frac{\sin B}{b} \][/tex]
for any triangle, where \(A\) and \(B\) are angles, and \(a\) and \(b\) are the sides opposite those angles respectively.
4. Applying the given values:
- In the given problem, we need an equation to relate the angle of elevation, the shadow length, and the pole's height.
5. Choosing the correct equation:
- We need to identify which of the given equations appropriately uses the Sine Law to solve for \(x\) (the length of the pole):
- \(\frac{\sin 40}{x} = \frac{\sin 60}{12}\)
- \(\frac{\sin 40}{12} = \frac{\sin 60}{x}\)
- \(\frac{\sin 60}{x} = \frac{\sin 80}{12}\)
- \(\frac{\sin 80}{x} = \frac{\sin 40}{12}\)
6. Comparing the options:
- We are working with \(\sin 40^\circ\), \(\sin 60^\circ\), and the known length of the shadow \(12\), to find the height \(x\).
- Match given values with appropriate form:
[tex]\[ \frac{\sin 40}{12} = \frac{\sin 60}{x} \][/tex]
This equation appropriately uses the Sine Law to relate the angle of elevation \(40^\circ\), the known length of shadow (12 feet), and another angle of \(60^\circ\) with the unknown length \(x\).
So, the correct equation that Kim could use to find \(x\), the length of the pole, is:
[tex]\[ \boxed{\frac{\sin 40}{12}=\frac{\sin 60}{x}} \][/tex]
1. Understanding the problem:
- We are given a pole that casts a 12-foot shadow.
- The sun's angle of elevation is \(40^\circ\).
- We need to find the equation that can help us determine \(x\), which is the length of the pole.
2. Identifying the right trigonometric function:
- In this problem, we are dealing with angles and the lengths of sides in a right triangle formed by the pole, its shadow, and the line of sight from the top of the pole to the tip of the shadow.
3. Using the Sine Law:
- The Sine Law states:
[tex]\[ \frac{\sin A}{a} = \frac{\sin B}{b} \][/tex]
for any triangle, where \(A\) and \(B\) are angles, and \(a\) and \(b\) are the sides opposite those angles respectively.
4. Applying the given values:
- In the given problem, we need an equation to relate the angle of elevation, the shadow length, and the pole's height.
5. Choosing the correct equation:
- We need to identify which of the given equations appropriately uses the Sine Law to solve for \(x\) (the length of the pole):
- \(\frac{\sin 40}{x} = \frac{\sin 60}{12}\)
- \(\frac{\sin 40}{12} = \frac{\sin 60}{x}\)
- \(\frac{\sin 60}{x} = \frac{\sin 80}{12}\)
- \(\frac{\sin 80}{x} = \frac{\sin 40}{12}\)
6. Comparing the options:
- We are working with \(\sin 40^\circ\), \(\sin 60^\circ\), and the known length of the shadow \(12\), to find the height \(x\).
- Match given values with appropriate form:
[tex]\[ \frac{\sin 40}{12} = \frac{\sin 60}{x} \][/tex]
This equation appropriately uses the Sine Law to relate the angle of elevation \(40^\circ\), the known length of shadow (12 feet), and another angle of \(60^\circ\) with the unknown length \(x\).
So, the correct equation that Kim could use to find \(x\), the length of the pole, is:
[tex]\[ \boxed{\frac{\sin 40}{12}=\frac{\sin 60}{x}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.