Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze the given table and answer the question step-by-step.
First, we need to find the relevant probabilities:
1. [tex]\[ P(C | M^{\prime}) \][/tex]: This is the probability that a person is color-blind given that the person is not male (female).
2. [tex]\[ P(C) \][/tex]: This is the overall probability that a person is color-blind.
We are given the following data in the table:
- [tex]\[ P(C \cap M^{\prime}) = 0.002 \][/tex]
- [tex]\[ P(M^{\prime}) = 0.583 \][/tex]
- [tex]\[ P(C) = 0.034 \][/tex]
First, let's calculate [tex]\[ P(C | M^{\prime}) \][/tex]:
[tex]\[ P(C | M^{\prime}) = \frac{P(C \cap M^{\prime})}{P(M^{\prime})} \][/tex]
Substituting the given values:
[tex]\[ P(C | M^{\prime}) = \frac{0.002}{0.583} \approx 0.003 \][/tex]
Now we compare [tex]\[ P(C | M^{\prime}) \][/tex] with [tex]\[ P(C) \][/tex]:
[tex]\[ P(C) = 0.034 \][/tex]
Finally, we determine if the events \(C\) and \(M^{\prime}\) are dependent. Two events are dependent if \(P(E \mid F) \neq P(E)\). Here, we compare \(P(C | M^{\prime})\) and \(P(C)\):
[tex]\[ P(C | M^{\prime}) \approx 0.003 \][/tex]
[tex]\[ P(C) = 0.034 \][/tex]
Since \(P(C | M^{\prime}) \neq P(C)\), we conclude that the events \(C\) and \(M^{\prime}\) are dependent.
### Final Answer:
The events [tex]\(C\)[/tex] and [tex]\(M^{\prime}\)[/tex] are dependent because [tex]\(P(C \mid M^{\prime}) = 0.003\)[/tex] and [tex]\(P(C) = 0.034\)[/tex].
First, we need to find the relevant probabilities:
1. [tex]\[ P(C | M^{\prime}) \][/tex]: This is the probability that a person is color-blind given that the person is not male (female).
2. [tex]\[ P(C) \][/tex]: This is the overall probability that a person is color-blind.
We are given the following data in the table:
- [tex]\[ P(C \cap M^{\prime}) = 0.002 \][/tex]
- [tex]\[ P(M^{\prime}) = 0.583 \][/tex]
- [tex]\[ P(C) = 0.034 \][/tex]
First, let's calculate [tex]\[ P(C | M^{\prime}) \][/tex]:
[tex]\[ P(C | M^{\prime}) = \frac{P(C \cap M^{\prime})}{P(M^{\prime})} \][/tex]
Substituting the given values:
[tex]\[ P(C | M^{\prime}) = \frac{0.002}{0.583} \approx 0.003 \][/tex]
Now we compare [tex]\[ P(C | M^{\prime}) \][/tex] with [tex]\[ P(C) \][/tex]:
[tex]\[ P(C) = 0.034 \][/tex]
Finally, we determine if the events \(C\) and \(M^{\prime}\) are dependent. Two events are dependent if \(P(E \mid F) \neq P(E)\). Here, we compare \(P(C | M^{\prime})\) and \(P(C)\):
[tex]\[ P(C | M^{\prime}) \approx 0.003 \][/tex]
[tex]\[ P(C) = 0.034 \][/tex]
Since \(P(C | M^{\prime}) \neq P(C)\), we conclude that the events \(C\) and \(M^{\prime}\) are dependent.
### Final Answer:
The events [tex]\(C\)[/tex] and [tex]\(M^{\prime}\)[/tex] are dependent because [tex]\(P(C \mid M^{\prime}) = 0.003\)[/tex] and [tex]\(P(C) = 0.034\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.