Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Simplify the expression below.

[tex]\[
\left(x^{-4}\right)^{-6}
\][/tex]

A. \(x^{-24}\)

B. \(x^{-10}\)

C. \(x^{10}\)

D. [tex]\(x^{24}\)[/tex]


Sagot :

To simplify the expression \(\left(x^{-4}\right)^{-6}\), we will apply the rules of exponents step by step.

1. Understanding the Base and Exponent:
- The original expression \(\left(x^{-4}\right)^{-6}\) involves a base of \(x^{-4}\) raised to the power of \(-6\).

2. Applying the Power of a Power Rule:
- One of the exponent rules states that \(\left(a^m\right)^n = a^{m \cdot n}\).

Using this rule:
[tex]\[ \left(x^{-4}\right)^{-6} = x^{-4 \cdot -6} \][/tex]

3. Simplifying the Exponent:
- Now, we multiply the exponents:
[tex]\[ -4 \cdot -6 = 24 \][/tex]

Thus:
[tex]\[ \left(x^{-4}\right)^{-6} = x^{24} \][/tex]

Therefore, the simplified form of the expression \(\left(x^{-4}\right)^{-6}\) is \(x^{24}\), which corresponds to choice D.

So, the answer is:
[tex]\[ \boxed{x^{24}} \][/tex]