Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the range of the function \( y = x^3 \), we need to analyze the behavior of the function over all possible values of \( x \).
### Step-by-Step Solution:
1. Understanding the Function:
The given function is \( y = x^3 \), which is a cubic function. Cubic functions have a distinct shape and tend to cover all values more extensively than quadratic or linear functions.
2. Increasing Nature:
The function \( y = x^3 \) is monotonic, which means it is consistently increasing or decreasing over its entire domain. Specifically, the cubic function \( y = x^3 \) increases without bound as \( x \) increases and decreases without bound as \( x \) decreases.
3. Domain:
The domain of the function \( y = x^3 \) includes all real numbers, \( (-\infty, \infty) \), since any real number substituted for \( x \) results in a real number \( y \).
4. Behavior at Extremes:
- As \( x \to \infty \): \( y = x^3 \to \infty \)
- As \( x \to -\infty \): \( y = x^3 \to -\infty \)
This indicates that as \( x \) takes on increasingly large positive or negative values, \( y \) also takes on increasingly large positive or negative values, respectively.
5. Covering All Real Values:
- For positive values of \( x \), \( y \) can be any positive real number.
- For negative values of \( x \), \( y \) can be any negative real number.
- For \( x = 0 \), \( y = 0^3 = 0 \).
Therefore, the output \( y \) of the function \( y = x^3 \) can take any real number value.
### Conclusion:
Given the above analysis, the range of the function \( y = x^3 \) is indeed all real numbers. In other words, \( y \) can be any real number, spanning from \( -\infty \) to \( \infty \).
Therefore, the correct answer is:
1. all real numbers
### Step-by-Step Solution:
1. Understanding the Function:
The given function is \( y = x^3 \), which is a cubic function. Cubic functions have a distinct shape and tend to cover all values more extensively than quadratic or linear functions.
2. Increasing Nature:
The function \( y = x^3 \) is monotonic, which means it is consistently increasing or decreasing over its entire domain. Specifically, the cubic function \( y = x^3 \) increases without bound as \( x \) increases and decreases without bound as \( x \) decreases.
3. Domain:
The domain of the function \( y = x^3 \) includes all real numbers, \( (-\infty, \infty) \), since any real number substituted for \( x \) results in a real number \( y \).
4. Behavior at Extremes:
- As \( x \to \infty \): \( y = x^3 \to \infty \)
- As \( x \to -\infty \): \( y = x^3 \to -\infty \)
This indicates that as \( x \) takes on increasingly large positive or negative values, \( y \) also takes on increasingly large positive or negative values, respectively.
5. Covering All Real Values:
- For positive values of \( x \), \( y \) can be any positive real number.
- For negative values of \( x \), \( y \) can be any negative real number.
- For \( x = 0 \), \( y = 0^3 = 0 \).
Therefore, the output \( y \) of the function \( y = x^3 \) can take any real number value.
### Conclusion:
Given the above analysis, the range of the function \( y = x^3 \) is indeed all real numbers. In other words, \( y \) can be any real number, spanning from \( -\infty \) to \( \infty \).
Therefore, the correct answer is:
1. all real numbers
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.