Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the equation \( 2 \sin^2 x - \cos x - 1 = 0 \) on the interval \([0, 2\pi)\), we will use the trigonometric identity \(\sin^2 x = 1 - \cos^2 x\). This will allow us to express the equation in terms of \(\cos x\).
Step-by-Step Solution:
1. Use the identity \(\sin^2 x = 1 - \cos^2 x\):
[tex]\[ 2 \sin^2 x - \cos x - 1 = 0 \implies 2 (1 - \cos^2 x) - \cos x - 1 = 0 \][/tex]
2. Expand and simplify the equation:
[tex]\[ 2 - 2 \cos^2 x - \cos x - 1 = 0 \implies -2 \cos^2 x - \cos x + 1 = 0 \][/tex]
3. Multiply through by -1 to make the quadratic equation more standard:
[tex]\[ 2 \cos^2 x + \cos x - 1 = 0 \][/tex]
4. Solve the quadratic equation for \(\cos x\):
The quadratic equation is \(2y^2 + y - 1 = 0\), where \(y = \cos x\).
To solve for \(y\), we use the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 2\), \(b = 1\), and \(c = -1\).
[tex]\[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm \sqrt{9}}{4} = \frac{-1 \pm 3}{4} \][/tex]
Thus, we have two solutions:
[tex]\[ y = \frac{-1 + 3}{4} = \frac{2}{4} = \frac{1}{2} \][/tex]
[tex]\[ y = \frac{-1 - 3}{4} = \frac{-4}{4} = -1 \][/tex]
Therefore, \(\cos x = \frac{1}{2}\) or \(\cos x = -1\).
5. Find \(x\) in the interval \([0, 2\pi)\):
- For \(\cos x = \frac{1}{2}\):
[tex]\[ x = \frac{\pi}{3}, \frac{5\pi}{6} \][/tex]
- For \(\cos x = -1\):
[tex]\[ x = \pi \][/tex]
Hence, the complete set of solutions in the interval \([0, 2\pi)\) is:
[tex]\[ x = \frac{\pi}{3}, \frac{5\pi}{3}, \pi \][/tex]
Select the correct choice:
A. \(x = \frac{\pi}{3}, \frac{5\pi}{3}, \pi\)
Therefore, the solutions to the given equation [tex]\(2 \sin^2 x - \cos x - 1 = 0\)[/tex] on the interval [tex]\([0, 2\pi)\)[/tex] are [tex]\(x = \frac{\pi}{3}, \frac{5\pi}{3}, \pi\)[/tex].
Step-by-Step Solution:
1. Use the identity \(\sin^2 x = 1 - \cos^2 x\):
[tex]\[ 2 \sin^2 x - \cos x - 1 = 0 \implies 2 (1 - \cos^2 x) - \cos x - 1 = 0 \][/tex]
2. Expand and simplify the equation:
[tex]\[ 2 - 2 \cos^2 x - \cos x - 1 = 0 \implies -2 \cos^2 x - \cos x + 1 = 0 \][/tex]
3. Multiply through by -1 to make the quadratic equation more standard:
[tex]\[ 2 \cos^2 x + \cos x - 1 = 0 \][/tex]
4. Solve the quadratic equation for \(\cos x\):
The quadratic equation is \(2y^2 + y - 1 = 0\), where \(y = \cos x\).
To solve for \(y\), we use the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 2\), \(b = 1\), and \(c = -1\).
[tex]\[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm \sqrt{9}}{4} = \frac{-1 \pm 3}{4} \][/tex]
Thus, we have two solutions:
[tex]\[ y = \frac{-1 + 3}{4} = \frac{2}{4} = \frac{1}{2} \][/tex]
[tex]\[ y = \frac{-1 - 3}{4} = \frac{-4}{4} = -1 \][/tex]
Therefore, \(\cos x = \frac{1}{2}\) or \(\cos x = -1\).
5. Find \(x\) in the interval \([0, 2\pi)\):
- For \(\cos x = \frac{1}{2}\):
[tex]\[ x = \frac{\pi}{3}, \frac{5\pi}{6} \][/tex]
- For \(\cos x = -1\):
[tex]\[ x = \pi \][/tex]
Hence, the complete set of solutions in the interval \([0, 2\pi)\) is:
[tex]\[ x = \frac{\pi}{3}, \frac{5\pi}{3}, \pi \][/tex]
Select the correct choice:
A. \(x = \frac{\pi}{3}, \frac{5\pi}{3}, \pi\)
Therefore, the solutions to the given equation [tex]\(2 \sin^2 x - \cos x - 1 = 0\)[/tex] on the interval [tex]\([0, 2\pi)\)[/tex] are [tex]\(x = \frac{\pi}{3}, \frac{5\pi}{3}, \pi\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.