Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve for \(\cos (\alpha + \beta)\), \(\sin (\alpha + \beta)\), and \(\tan (\alpha + \beta)\) given \(\sin (\alpha)=\frac{4}{5}\) where \(\alpha\) lies in quadrant I, and \(\sin (\beta)=\frac{24}{25}\) where \(\beta\) lies in quadrant II, let's proceed step-by-step.
### Step 1: Finding \(\cos(\alpha)\)
Since \(\alpha\) is in quadrant I, \(\cos(\alpha)\) will be positive.
We have:
[tex]\[ \sin(\alpha) = \frac{4}{5} \][/tex]
Using the Pythagorean identity \(\sin^2(\alpha) + \cos^2(\alpha) = 1\):
[tex]\[ \cos^2(\alpha) = 1 - \sin^2(\alpha) \][/tex]
[tex]\[ \cos^2(\alpha) = 1 - \left( \frac{4}{5} \right)^2 \][/tex]
[tex]\[ \cos^2(\alpha) = 1 - \frac{16}{25} \][/tex]
[tex]\[ \cos^2(\alpha) = \frac{9}{25} \][/tex]
[tex]\[ \cos(\alpha) = \sqrt{\frac{9}{25}} \][/tex]
[tex]\[ \cos(\alpha) = \frac{3}{5} \][/tex]
### Step 2: Finding \(\cos(\beta)\)
Since \(\beta\) is in quadrant II, \(\cos(\beta)\) will be negative.
We have:
[tex]\[ \sin(\beta) = \frac{24}{25} \][/tex]
Using the Pythagorean identity \(\sin^2(\beta) + \cos^2(\beta) = 1\):
[tex]\[ \cos^2(\beta) = 1 - \sin^2(\beta) \][/tex]
[tex]\[ \cos^2(\beta) = 1 - \left( \frac{24}{25} \right)^2 \][/tex]
[tex]\[ \cos^2(\beta) = 1 - \frac{576}{625} \][/tex]
[tex]\[ \cos^2(\beta) = \frac{49}{625} \][/tex]
[tex]\[ \cos(\beta) = -\sqrt{\frac{49}{625}} \][/tex]
[tex]\[ \cos(\beta) = -\frac{7}{25} \][/tex]
### Step 3: Using Angle Addition Formulas
#### Finding \(\cos (\alpha + \beta)\)
[tex]\[ \cos (\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \][/tex]
Substitute the values for \(\cos(\alpha)\), \(\cos(\beta)\), \(\sin(\alpha)\), and \(\sin(\beta)\):
[tex]\[ \cos (\alpha + \beta) = \left( \frac{3}{5} \right) \left( -\frac{7}{25} \right) - \left( \frac{4}{5} \right) \left( \frac{24}{25} \right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = \left( \frac{3 \times -7}{125} \right) - \left( \frac{4 \times 24}{125} \right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-21}{125} - \frac{96}{125} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-117}{125} \][/tex]
[tex]\[ \cos (\alpha + \beta) = -0.936 \][/tex]
So,
[tex]\[ \cos (\alpha + \beta) = - \boxed{0.936} \][/tex]
#### Finding \(\sin (\alpha + \beta)\)
[tex]\[ \sin (\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) \][/tex]
Substitute the values for \(\cos(\alpha)\), \(\cos(\beta)\), \(\sin(\alpha)\), and \(\sin(\beta)\):
[tex]\[ \sin (\alpha + \beta) = \left( \frac{4}{5} \right) \left( -\frac{7}{25} \right) + \left( \frac{3}{5} \right) \left( \frac{24}{25} \right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \left( \frac{4 \times -7}{125} \right) + \left( \frac{3 \times 24}{125} \right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{-28}{125} + \frac{72}{125} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{44}{125} \][/tex]
[tex]\[ \sin (\alpha + \beta) = 0.352 \][/tex]
So,
[tex]\[ \sin (\alpha + \beta) = \boxed{0.352} \][/tex]
#### Finding \(\tan (\alpha + \beta)\)
[tex]\[ \tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} \][/tex]
Substitute the values for \(\sin(\alpha + \beta)\) and \(\cos(\alpha + \beta)\):
[tex]\[ \tan (\alpha + \beta) = \frac{0.352}{-0.936} \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.376 \][/tex]
So,
[tex]\[ \tan (\alpha + \beta) = - \boxed{0.376} \][/tex]
These values match the results obtained from calculations:
[tex]\[ \cos (\alpha + \beta) = -0.936 \][/tex]
[tex]\[ \sin (\alpha + \beta) = 0.352 \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.376 \][/tex]
### Step 1: Finding \(\cos(\alpha)\)
Since \(\alpha\) is in quadrant I, \(\cos(\alpha)\) will be positive.
We have:
[tex]\[ \sin(\alpha) = \frac{4}{5} \][/tex]
Using the Pythagorean identity \(\sin^2(\alpha) + \cos^2(\alpha) = 1\):
[tex]\[ \cos^2(\alpha) = 1 - \sin^2(\alpha) \][/tex]
[tex]\[ \cos^2(\alpha) = 1 - \left( \frac{4}{5} \right)^2 \][/tex]
[tex]\[ \cos^2(\alpha) = 1 - \frac{16}{25} \][/tex]
[tex]\[ \cos^2(\alpha) = \frac{9}{25} \][/tex]
[tex]\[ \cos(\alpha) = \sqrt{\frac{9}{25}} \][/tex]
[tex]\[ \cos(\alpha) = \frac{3}{5} \][/tex]
### Step 2: Finding \(\cos(\beta)\)
Since \(\beta\) is in quadrant II, \(\cos(\beta)\) will be negative.
We have:
[tex]\[ \sin(\beta) = \frac{24}{25} \][/tex]
Using the Pythagorean identity \(\sin^2(\beta) + \cos^2(\beta) = 1\):
[tex]\[ \cos^2(\beta) = 1 - \sin^2(\beta) \][/tex]
[tex]\[ \cos^2(\beta) = 1 - \left( \frac{24}{25} \right)^2 \][/tex]
[tex]\[ \cos^2(\beta) = 1 - \frac{576}{625} \][/tex]
[tex]\[ \cos^2(\beta) = \frac{49}{625} \][/tex]
[tex]\[ \cos(\beta) = -\sqrt{\frac{49}{625}} \][/tex]
[tex]\[ \cos(\beta) = -\frac{7}{25} \][/tex]
### Step 3: Using Angle Addition Formulas
#### Finding \(\cos (\alpha + \beta)\)
[tex]\[ \cos (\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta) \][/tex]
Substitute the values for \(\cos(\alpha)\), \(\cos(\beta)\), \(\sin(\alpha)\), and \(\sin(\beta)\):
[tex]\[ \cos (\alpha + \beta) = \left( \frac{3}{5} \right) \left( -\frac{7}{25} \right) - \left( \frac{4}{5} \right) \left( \frac{24}{25} \right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = \left( \frac{3 \times -7}{125} \right) - \left( \frac{4 \times 24}{125} \right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-21}{125} - \frac{96}{125} \][/tex]
[tex]\[ \cos (\alpha + \beta) = \frac{-117}{125} \][/tex]
[tex]\[ \cos (\alpha + \beta) = -0.936 \][/tex]
So,
[tex]\[ \cos (\alpha + \beta) = - \boxed{0.936} \][/tex]
#### Finding \(\sin (\alpha + \beta)\)
[tex]\[ \sin (\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) \][/tex]
Substitute the values for \(\cos(\alpha)\), \(\cos(\beta)\), \(\sin(\alpha)\), and \(\sin(\beta)\):
[tex]\[ \sin (\alpha + \beta) = \left( \frac{4}{5} \right) \left( -\frac{7}{25} \right) + \left( \frac{3}{5} \right) \left( \frac{24}{25} \right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \left( \frac{4 \times -7}{125} \right) + \left( \frac{3 \times 24}{125} \right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{-28}{125} + \frac{72}{125} \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{44}{125} \][/tex]
[tex]\[ \sin (\alpha + \beta) = 0.352 \][/tex]
So,
[tex]\[ \sin (\alpha + \beta) = \boxed{0.352} \][/tex]
#### Finding \(\tan (\alpha + \beta)\)
[tex]\[ \tan (\alpha + \beta) = \frac{\sin (\alpha + \beta)}{\cos (\alpha + \beta)} \][/tex]
Substitute the values for \(\sin(\alpha + \beta)\) and \(\cos(\alpha + \beta)\):
[tex]\[ \tan (\alpha + \beta) = \frac{0.352}{-0.936} \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.376 \][/tex]
So,
[tex]\[ \tan (\alpha + \beta) = - \boxed{0.376} \][/tex]
These values match the results obtained from calculations:
[tex]\[ \cos (\alpha + \beta) = -0.936 \][/tex]
[tex]\[ \sin (\alpha + \beta) = 0.352 \][/tex]
[tex]\[ \tan (\alpha + \beta) = -0.376 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.